研究生: |
邱雯郁 Chiu, Wen Yu |
---|---|
論文名稱: |
製作奈米模板觀察在侷限效應下嵌段共聚物之自組裝現象 Fabrication of Nano-Templates for Observing Self-Assembly of Block Copolymers in Confined Structures |
指導教授: |
李明昌
Lee, Ming Chang |
口試委員: |
何榮銘
Ho, Rong Ming 洪毓玨 Hung, Yu Chueh |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 奈米模板 、多重微影 、聚苯乙烯-聚二甲基矽烷 、自組裝 |
外文關鍵詞: | Nano-Templates, Multi-Step Photolithography, PS-PDMS, Self-Assembly |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究結合由“top-down”微影製程所得到不同形貌的奈米模板以及“bottom-up”的嵌段共聚物自組裝方法來得到一個大面積且具有序性的奈米結構。
在第一版奈米模板中,我們以沉積硬遮罩取代光阻、調整蝕刻氣體參數以及事先成長蝕刻終點的方式,得到擁有垂直側壁、平坦底部以及改善微溝渠現象的奈米模板;而在奈米模板尺寸及圖形的優化上,第二版奈米模板利用電子束微影系統搭配製程的垂直整合得到週期為250奈米的奈米光柵結構,第三版奈米模板則是透過多重曝光的方式改善正方形及六角形結構的角落圓滑現象。
In this study, we combine the “top-down” lithography process and “bottom-up” self-assembly of block copolymer approach to generate nano-structure with well-oriented periodic arrays over large area.
The first nano-template is a periodic Si grating made by dry etching, where a SiO2 layer is used as a hard mask to define the grating structure. We modify the concentration of process gases during etching, a steep sidewall and flat surface at the bottom of trenches is achieved. The second nano-template is with a grating feature size down to 50 nm, which is fabricated by e-beam lithography and a sidewall coating technique. The 3rd nano-template is square and hexagonal sharp-angle wells fabricated through multi-step photolithography. Then we take a process similar to making the second nano-template to get the final structure.
[1] 陳家俊、藍榮煌, “奈米科技的發展與應用” 半導體科技, 2001,台北市: 亞格數位
[2] Roper, C.S., et al., “Single crystal silicon nanopillars, nanoneedles and nanoblades with precise positioning for massively parallel nanoscale device integration.” Nanotechnology, 2012. 23(22): p. 10.
[3] Latu-Romain, E., et al., “A generic approach for vertical integration of nanowires.” Nanotechnology, 2008. 19(34): p. 6.
[4] Mita, K., et al., “Cylindrical Domains of Block Copolymers Developed via Ordering under Moving Temperature Gradient: Real-Space Analysis.” Macromolecules, 2008. 41(22): p. 8789-8799.
[5] Hashimoto, T., et al., “The effect of temperature gradient on the microdomain orientation of diblock copolymers undergoing an order-disorder transition.” Macromolecules, 1999. 32(3): p. 952-954.
[6] Morkved, T.L., et al., “Local control of microdomain orientation in diblock copolymer thin films with electric fields.” Science, 1996. 273(5277): p. 931-933.
[7] Peters, R.D., et al., “Wetting behavior of block copolymers on self assembled films of alkylchlorosiloxanes: Effect of grafting density. Langmuir”, 2000. 16(24): p. 9620-9626.
[8] Peters, R.D., et al., “Using self-assembled monolayers exposed to X-rays to control the wetting behavior of thin films of diblock copolymers.” Langmuir, 2000. 16(10): p. 4625-4631.
[9] Han, E., et al., “Photopatternable imaging layers for controlling block copolymer microdomain orientation.” Advanced Materials, 2007. 19(24): p. 4448-+.
[10] Segalman, R.A., E.J. Kramer, and H. Yokoyama, “Graphoepitaxy of Spherical Domain Block Copolymer Films.” Advanced Materials, 2001. vol. 13: p. 1152.
[11] Tavakkoli, K.G.A., et al., “Templating Three-Dimensional Self-Assembled Structures in Bilayer Block Copolymer Films.” Science, 2012. 336(6086): p. 1294-1298.
[12] Whitesides, G.M. and B. Grzybowski, “Self-assembly at all scales.” Science, 2002. 295(5564): p. 2418-2421.
[13] Philp, D. and J.F. Stoddart, “Self-Assembly in Natural and Unnatural Systems.” Angewandte Chemie International Edition in English, 1996. 35(11): p. 1154-1196.
[14] Forster, S. and T. Plantenberg, “From self-organizing polymers to nanohybrid and biomaterials.” Angewandte Chemie-International Edition, 2002. 41(5): p. 689-714.
[15] Gast, A.P., C.K. Hall, and W.B. Russel, “POLYMER-INDUCED PHASE SEPARATIONS IN NON-AQUEOUS COLLOIDAL SUSPENSIONS.” Journal of Colloid and Interface Science, 1983. 96(1): p. 251-267.
[16] Park, S., et al., “Macroscopic 10-Terabit-per-Square- Inch Arrays from Block Copolymers with Lateral Order.” Science, 2009. 323(5917): p. 1030-1033.
[17] Leibler, L., “Theory of Microphase Separation in Block Copolymers.” Macromolecules, 1980. 13(6): p. 1602-1617.
[18] Traiphol, R., et al., “Spectroscopic Study of Photophysical Change in Collapsed Coils of Conjugated Polymers: Effects of Solvent and Temperature.” 2006. 39: p. 1165–1172.
[19] Matsen, M.W. and F.S. Bates, “Unifying Weak- and Strong-Segregation Block Copolymer Theories.” Macromolecules, 1996. 29(4): p. 1091-1098.
[20] Hamley, I.W., “Ordering in thin films of block copolymers: Fundamentals to potential applications.” Progress in Polymer Science, 2009. 34(11): p. 1161-1210.
[21] 蕭宏, “雙重、三重和多重圖案化技術” 半導體製程技術導論, 2013, 新北市: 全華圖書.
[22] Wu, H.-Y. Canon FPA-3000i5+ Stepper.
[23] Vitale, S.A., H. Chae, and H.H. Sawin, “Silicon etching yields in F-2, Cl-2, Br-2, and HBr high density plasmas.” Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 2001. 19(5): p. 2197-2206.
[24] Hoekstra, R.J., et al., “Microtrenching resulting from specular reflection during chlorine etching of silicon.” Journal of Vacuum Science & Technology B, 1998. 16(4): p. 2102-2104.
[25] 梁曉堯, “矽積體光學晶片應用於光收發雙向多工器模組” 2011, 新竹市: 國立清華大學光電所.
[26] Merlos, A., et al., “TMAH/IPA ANISOTROPIC ETCHING CHARACTERISTICS.” Sensors and Actuators a-Physical, 1993. 37-8: p. 737-743.
[27] 巫清景, “製作奈米模板並探討嵌段共聚物於奈米模板下之自組裝現象” 2015, 新竹市: 國立清華大學光電所.