研究生: |
楊燿瑜 Yao-Yu Yang |
---|---|
論文名稱: |
電漿噴塗法成長具奈米結構之固態氧化物燃料電池陽極薄膜Ni/YSZ 之結構與電性分析 Structural and electrical performance analysis on nanostructure of plasma-spray- coating solid oxide fuel cell anode (Ni/YSZ) |
指導教授: |
李志浩
Chih-Hao Lee 黃振興 Chang-Sing Hwang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 固態氧化物燃料電池 、陽極 、活化極化損失 、奈米顆粒 、三相態 、孔隙率 |
外文關鍵詞: | SOFC, Anode, Activation polarization loss, Nano particle, Three phase boundary, porosity |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此文章主要介紹,大氣電漿噴塗技術成長具奈米結構之固態氧化物燃料電池陽極薄膜形貌及其性質,藉由熱電漿乾式噴塗法,可以確切成功製造出具奈米顆粒結構之陽極薄膜,由實驗結果觀察得:經由電漿噴塗且還原過後之陽極薄膜(Ni/YSZ),其薄膜顆粒大小約為50~60 nm,孔隙率(Porosity)約為25 %,相較於一般製程所成長之陽極薄膜之顆粒大小(1~2μm)明顯細小許多,而微米顆粒所組成之陽極薄膜孔隙率約為30~50 %,而顆粒大小、孔隙率以及孔隙大小,將影響陽極薄膜之三相態(Three phase boundary)之數量,而三相態之數量多寡與電化學反應面積成正比關係,且當陽極薄膜顆粒大小達奈米尺度(50~60 nm)時,三相態數量約為微米顆粒(1~2 μm)之陽極薄膜3~4個數量級(order);且在固態氧化物燃料電池運轉過程中,活化極化(Activity polarization)損失,為燃料電池輸出功率損失之一,由T.Fukui[1]提出,電極之活化極化與電極之顆粒大小有一定之關係式,若電極之顆粒越小,其活化極化損失可以藉此改善。所以當陽極薄膜顆粒大小製備成奈米顆粒時,顆粒與顆粒之間除了提高接觸機率外,更可以大幅提升電化學反應區之面積(即三相態,TPB),以提升燃料電池作用時之發電效率。
In this research, we fabricated the nano-particle structure of solid oxide fuel cell (SOFC) anode film by thermal plasma spray coating, which produced a homogeneous layer of NiO/YSZ mixture coated on the YSZ substrate. Then, reduce the sample of NiO/YSZ to Ni/YSZ by mixture gas (7 % H2 + 93 % Ar) in high temperature (800℃). After reduction, the particle size of film of the SOFC anode is about 50 nm. In our sample, we estimated the number of three phase boundary (TPB) is about 3~4 orders of magnitude better than micro scale particles. The result can obviously increase the electrochemical reaction area in SOFC anode. The single layer of anode is highly conductive with 1000 S/cm in room temperature. We observed the morphology and structure of SOFC anode by X-ray powder diffraction (XRD) 、scanning electron microscopy (SEM) 、 atomic force microscopy (AFM) and Brunauer-Emmett-Teller (BET). These tools can help us observed the characteristic of nano-particle in SOFC anode.
1. T. Fukui, Journal of European Ceramic Society 23 (2003) 2963-2967.
2. M. Marinsek, K. Zupan, J. Macek, Journal of Power Sources 86 (2000) 383-389.
3. Y.M. Park, G.M. Choi, Solid State Ionics 120 (1999) 265-274.
4. E.I. Tiffee, A. Weber, D. Herbstritt, Journal of European Ceramic Society 21 (2001) 1805-1811.
5. H. Tu, U. Stimming, Journal of Power Sources 127 (2004) 284-293.
6. J. Larminie, 〝Fuel Cell Systems Explained 2nd〞, John Wiley & Sons Ch1 (2003) p5.
7. A.V. Virkar, J. Chen, C.W. Tanner, J.W. Kim, Solid State Ionics 131 (2000) 189-198.
8. D. Stover, Ceramics International 30 (2004) 1107-1113.
9. B.D. Boer, M. Gonzalez, H.J.M. Bouwmeester, H. Verweij, Solid State Ionics 127 (2000) 269-276.
10. R.E. Willford, Surface Science 547 (2003) 421-437.
11. S.P. Yoon, J. Han, S.W. Nam, T.H. Lim, S.A. Hong, Journal of Power Sources 136 (2004) 30-36.
12. X. Deng, A. Petric, Journal of Power Sources 140 (2005) 297-303.
13. T. Fukui, S. Ohara, M. Naito, K. Nogi, Journal of Power Sources 110 (2002) 91-95.
14. A. Weber, E.I. Tiffee, Journal of Power Sources 127 (2004) 273-283.
15. J.B. Goodenough, NATURE 404 20 APRIL 2000.
16. Y. Yamamura, S. Kawasaki, H. Sakai, Solid State Ionics 126 (1999) 181-189.
17. W.Z. Zhu, Materials Science and Engineering A362 (2003) 228-239.
18. S.C. Singhal, Solid State Ionics 152-153 (2002) 405-410.
19. R.M.C. Clemmer, S.F. Corbin, Solid State Ionics 166 (2004) 251-259.
20. S.T. Aruna, M. Muthuraman, K.C. Patil, Solid State Ionics 111 (1998) 45-51.
21. F. Tietz, F.J. Dias, B. Dubiel, H.J. Penkalla, Materials Science and Engineering B68 (1999) 35-41.
22. J.H. Lee, H. Moon, H.W. Lee, J. Kim, J.D. Kim, K.H. Yoon, Solid State Ionics 148 (2002) 15-26.
23. J. Divisek, R. Wilkenhoner, Y. Volfkovich, Journal of Applied Electrochemistry 29 (1999) 153-163.
24. A. Ioselevich, A.A. Kornyshev. W. Lehnert, Solid State Ionics 124 (1999) 221-237.
25. D. Simwonis, F. Tietz, D. Stover, Solid State Ionics 132 (2000) 241-251.
26. D.S. Lee, J.H. Lee, J. Kim, H.W. Lee, H.S. Song, Solid State Ionics 166 (2004) 13-17.
27. T. Fukui, S. Ohara, M. Naito, K. Nogi, Powder Technology 132 (2003) 52-56.
28. J. Ilavsky, J.K. Stalick, Surface and Coating Technology 127 (2000) 120-129.
29. S.Primdahl, M. Mogensen, Solid State Ionics 152-153 (2002) 597-608.
30. K.A. Khor, L.G. Yu, S.H. Chan, X.J. Chen, Journal of the European Ceramic Society 23 (2003) 1855-1863.
31. E. Sominski, A. Gedanken, N. Perkas, H.P. Buchkremer, N.H. Menzler, L.Z. Zhang, J.C. Yu, Microporous and Mesoporous Materials 60 (2003) 91-97.
32. Y.B. Matus, L.C.D. Jonghe, C.P. Jacobson, S.J. Visco, Solid State Ionics 176 (2005) 443-449.
33. H. Tu, U. Stimming, Journal of Power Sources 127 (2004) 284-293.
34. M. Marinsek, K. Zupan, J. Macek, Journal of Power Sources 86 (2000) 383-389.
35. D. Simwonis, H. Thulen, F.J. Dias, A. Naoumidis, D. Stover, Journal of Materials Processing Technology 92-93 (1999) 107-111.
36. X. Zhang, S. Ohara, R. Maric, K. Mukai, T. Fukui, H. Yoshida, M. Nishimura, T. Inagaki, K. Miura, Journal of Power Sources 83 (1999) 170-177.
37. J.V. Herle, R. Ihringer, R.V. Cavieres, L. Constantin, O. Bucheli, Journal of the European Ceramic Society 21 (2001) 1855-1859.
38. J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis, L.J. Gauckler, Solid State Ionics 131 (2000) 79-96.
39. G. Meng, H. Song, Q. Dong, D. Peng, Solid State Ionics 175 (2004) 29-34.
40. J. Will, M.K.M. Hruschka, L. Gubler, L.J. Gauckler, Journal of the American Ceramic Society 84-2 (2001) 328.
41. B. Hobein, F. Tietz, D. Stover, E.W. Kreutz, Journal of Power Sources 105 (2002) 239242.
42. C. Xia, M. Liu, Solid State Ionics 152-153 (2002) 423-430.
43. K. Brinkiene, R. Kezelis, Journal of the European Ceramic Society 24 (2004) 1095-1099.
44. J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis, L.J. Gauckler, Solid State Ionics 131 (2000) 79-96.
45. H.E. Eaton, P. Zajchowski, Surface and Coatings Technology 120-121 (1999) 28-33.
46. G. Schiller, R.H. Henne, M. Lang, R. Ruckdaschel, S. Schaper, Fuel cells Bulletin 21 (2000) 7-12.
47. 汪建民(民90),材料分析,中國材料科學學會,第六章,P 124頁。
48. K.R. Lee, S.H. Choi, J. Kim, H.W. Lee, J.H. Lee, Journal of Power Sources 140 (2005) 226-234.
49. J. Divisek, R. Jung, I.C. Vinke, Journal of Applied Electrochemistry 29 (1999) 165-170.
50. R.M. Ormerod, Journal of Chemistry Society Rev. 32 (2003) 17-28.
51. F.H. Wang, R.S. Guo, Q.T. Wei, Y. Zhou, H.L. Li, S.L. Li, Materials Letters 58 (2004) 3079-3083.
52. G.Q. Shao, H. Cai, J.R. Xie, X.L. Duan, B.L. Wu, R.Z. Yuan, J.K. Guo, Materials Letters 57 (2003) 3287-3290.
53. V. Esposito, D.Z.D. Florio, F.C. Fonseca, E.N.S. Muccillo, R. Muccillo, E. Traversa, Journal of European Ceramic Society 25 (2005) 2637-2641.
54. A.C. Muller, D. Herbstritt, E.I. Tiffee, Solid State Ionics 152-153 (2002) 537-542.
55. 韓敏芳、彭藝萍(民93),固態氧化物燃料電池-材料及制備,科學出版社,第四章,P146頁。
56. S.K. Pratihar, A.D. Sharma, R.N. Basu, H.S. Maiti, Journal of Power Sources 129 (2004) 138-142.