研究生: |
王俊傑 Chun-Chieh Wang |
---|---|
論文名稱: |
裝配滾珠型自動平衡裝置之光碟機承載底座動態分析與系統設計 The dynamic analysis and system design for the optical disk drive equipped with an automatic ball balancer |
指導教授: |
宋震國
Cheng-Kuo Sung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 96 |
中文關鍵詞: | 光碟機 、滾珠型自動平衡裝置 、承載底座 、複合時間比例法 、穩定度分析 、扭轉運動 |
外文關鍵詞: | optical disk drives, automatic ball-type balance system, mecha, method of multiple time scales, stability analysis, torsional motion |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文針對裝配滾珠型自動平衡裝置之光碟機系統進行分析,以探討加裝自動平衡裝置後之系統動態行為。在分析的過程中,首先經由適當的假設,建立加裝自動平衡裝置後之系統數學模型,並透過Lagrange Equation的推導方式,推導出整個系統及自動平衡裝置中滾珠之動態方程式。接著使用複合時間比例法找出系統的穩態解並作穩定度分析,以探討各個設計參數對自動平衡裝置減振性能的影響。經由穩定度分析與動態模擬的結果顯示,系統在平移共振頻率與扭轉共振頻率附近皆有不穩定區域存在,使得滾珠無法定位下來;若欲發揮自動平衡裝置最佳的減振效果,系統必須操作在扭轉共振頻率以上。但如果在承載底座設計時,能儘量縮短主軸馬達與承載底座質心之距離,則可消除扭轉共振頻率附近的不穩定區域,使平移共振頻率以上皆是自動平衡裝置可工作的轉速範圍。上述理論分析結果也經由實驗獲得驗證,最後提出搭配滾珠型自動平衡裝置之承載底座設計方法及馬達加速曲線的設計概念,以提昇自動平衡裝置的平衡效果與一致性。
This thesis is devoted to study the dynamic behaviors of the optical disk drive equipped with an automatic ball-type balancer. A mathematical model considering the foundation design is first established based on some proper assumptions, and employs Lagrange’s equation to derive equations of motion for balls and foundation. Then utilize the method of multiple scales to obtain the steady-state solutions. Having completed a stability analysis, the influence of each parameter on the performance of automatic balance system (ABS) in radial vibration reduction is distilled. It’s obtained based on theoretical and simulation results that there are two unstable regions, where balancing balls cannot settle near translational and torsional resonance. To achieve an optimal balancing performance, i.e., the residual vibration is reduced to almost zero, the system must be operated above torsional resonance. Furthermore, shortening the distance between spindle motor and the C.G. of the foundation can eliminate the unstable region near torsional resonant frequency, so that the operating speeds above translational resonance are stable regions. The aforementioned results are verified via experiments as well. Finally, some guidelines on the foundation design and the velocity profile design of the spindle motor are proposed to improve balancing performance and consistence.
1. Thearle, E. L., 1950, “Automatic Dynamic Balancers (Part 1 – Leblanc Balancer),” Machine Design, Vol. 22, Sept., pp. 119-124.
2. Thearle, E. L., 1950, “Automatic Dynamic Balancers (Part 2 – Ring, Pendulum, Ball Balancers),” Machine Design, Vol. 22, Oct., pp. 103-106.
3. 井上順吉(Inoue)、陣內靖介、荒木嘉昭、中原 章,1979,“自動平衡裝置”,日本機械論文集 (C編),45卷,394號,646~652頁。
4. Bövik, P., and Högfors, C., 1986, “Autobalancing of Rotors,” Journal of Sound and Vibration, Vol. 111, pp. 429-440.
5. Wierzba, P., Cao, W. and Park, J., 1995, “Automatic Balancing of a Three-Dimensional Rigid Rotor System---A Washing Machine Application,” pp. 163-172.
6. Moorhem, V., 1996, “Analytical and Experimental Analysis of a Self-Compensating Dynamic Balancer in a Rotating Mechanism,” Transactions of the ASME, Journal of Dynamic Systems, Measurement, and Control, Vol. 118, pp. 468-475.
7. Rajalingham, C., Bhat, B. R. and Rakheja, S., 1998, “Automatic Balancing of Flexible Vertical Rotors Using a Guided Ball,” Int. J. Mech. Sci, Vol. 40, No. 9, pp. 825-834.
8. Silin, R., Royzman, V., Malygin, A., Borko, I. and Tholovsky, R., 1999, “The Research into Automatic Balancing Process of Rotors with Vertical Axis of Rotation,” Tenth World Congress on the Theory of Machine and Mechanisms, Oulu, Finland, June 20-24, pp. 1734-1739.
9. Hwang, C. H. and Chung, J., “Dynamic Analysis of an Automatic Ball Balancer with Double Races,” JSME International Journal, Series C, Vol. 42, No. 2, pp. 265-272.
10. Jinnouchi, Y., Araki, Y., Inoue, J., Ohtsuka, Y., and Tan, C., 1993, “Automatic Balancer (Static Balancing and Transient Response of a Multi-Ball Balancer),” Transactions of the Japan Society of Mechanical Engineers, Part C, Vol. 59, No. 557, pp. 79-84.
11. Kim, W. and Chung, J., 2002, “Dynamic Stability and Response of an Automatic Ball Balancer Equipped on an Optical Disk Drive,” Ninth International Congress on Sound and Vibration, Orlando, Florida, USA, July 8-11.
12. Nayfeh, A. H., 1978, “Perturbation Methods,” Wiley Interscience, New York.
13. Nayfeh, A. H. and Mook, D. T., 1979, “Nonlinear Oscillations,” Wiley Interscience, New York.
14. 黃偉煜,1999,創新自動平衡裝置設計,國立清華大學碩士論文。
15. 康展榮,2000,滾珠型自動平衡裝置的分析與設計,國立清華大學碩士論文。
16. 呂惠中,2001,滾動摩擦阻力對滾珠型自動平衡裝置性能的影響,國立清華大學碩士論文。
17. 黃耀德,2001,滾珠型自動平衡裝置對轉子非平面運動之改善,國立清華大學碩士論文。
18. 吳司多,2002,滾珠型自動平衡裝置對轉子非平面搖擺運動的影響,國立清華大學碩士論文。
19. 呂宗熙、汪仁德、陳俊明,“光碟機之振動分析”,電子產品關鍵技術專輯,機械工業雜誌,1998年6月號,127~137頁。
20. 蔡文彬,“馬達轉子的平衡校正”,機械月刊第二十五卷第五期,1999年5月號,365~367頁。
21. 鄭陳嶔、蔡慶祥、江佳儒,“DVD機構體設計技術”,電子產品關鍵機械技術專輯,機械工業雜誌,1998年6月號,138~146頁。
22. 戴志龍、陽毅平、鄭泗東、邱奕豪,“唯讀光碟機光頭組基座的結構分析與參數化設計”,中國機械工程學會第十三屆學術研討會,371~377頁。
23. “揭開高倍速光碟機的面紗”,第三波,1998年2月號,253~256頁。
24. Kiyoshi, M., Kazuhiro, M., Shuichi, Y., Michio, F., Tokuaki, U., and Masaaki, K., 1998, “Disk Drive Device,” Japanese Patent 10,083,622.
25. Takashi, K., Yoshihiro, S., Yoshiaki, Y., Shozo, S., and Shigeki, M., 1998, “Disk Type Storage Device,” Japanese Patent 10,092,094.
26. Takatoshi, Y., 1998, “Disk Drive Device,” Japanese Patent 10,188,465.
27. Masaaki, K., 1998, “Disk Device,” Japanese Patent 10,208,374.
28. Shinki, O., Mitsusachi, I., and Masanori, Y., 1998, “Ball Balancer and Centrifugal Separator Provided Therewith,” Japanese Patent 10,180,147.