研究生: |
王御多 Wang, Yu-To |
---|---|
論文名稱: |
超光譜影像中基於P次範數之最純像素鑑別與基於重生性模型階數之選擇 P-norm Based Purest Pixel Identification and Reproducibility Based Model Order Selection in Hyperspectral Images |
指導教授: |
祁忠勇
Chi, Chong-Yung 詹宗翰 Chan, Tsung-Han |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 47 |
中文關鍵詞: | 高光譜分解 、重生性 、假設檢定 、端元 |
外文關鍵詞: | hyperspectral unmixing, reproducibility, hypothesis testing, endmembers |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在超光譜遙感中,分解一個數據立方體(data cube)成為不同物質的頻譜特徵(端元(endmembers))和其相對應的豐度分數(abundance fractions),在分析固體表面礦物成分,扮演著非常重要的角色。一個純像素是指一個像素是完全的由一個物質的端元所構成,而大部分現存的高光譜分解方法是基於純像素假設的線性混和模型。本論文主要分兩大部分,首先,我們提出了一個估測端元的方法,適用於純像素條件成立的情形,稱之為P 次範數之最純像素鑑別(P-norm based
purest pixel identification (Tri-P))。此演算法是基於P 次範數以及正交投影的觀念。而後,根據已估測到的端元,我們可以使用倒置程序(inversion process)去找到相對應的豐度分數。然而,現存所有的超光譜分解的方法,包括我們所提出的Tri-P,需已知端元的個數為前提。因此,本篇論文的第二部分,提出一個估測端元個數的方法,稱之為基於重生性(reproducibility)模型階數之選擇(reproducibility based model order selection (RMOS))。此演算法是基於Tri-P 演算法以及重生性的概念,以估測端元個數。此外,在模型階數選擇中,我們知道一個好的方法去衡量重生性是非常重要。為了去更可靠地度量重生性,我們提出了一個結合Neyman-Pearson 假設檢定(Hypothesis testing)方法以量化重生性。最後,我們進行 Monte Carlo 模擬以及真實超光譜影像實驗,並和其它基於純像素假設的方法做比較,以展示所提出Tri-P 演算法有較低的運
算複雜度,以及RMOS 有較佳模型階數選擇的效能。
[1] G. Shaw and D. Manolakis, “Signal processing for hyperspectral image exploitation,”IEEE Signal Process. Mag., vol. 19, no. 1, pp. 12–16, Jan. 2002.
[2] T.-H. Chan, W.-K. Ma, C.-Y. Chi, and Y. Wang, “A convex analysis based criterion for blind separation of non-negative sources,” in Proc. IEEE International
Conference on Acoustics, Speech, and Signal Processing, Honolulu, Hawaii, April 15-20, 2007, pp. 961–964.
[3] J. W. Boardman, F. A. Kruse, and R. O. Green, “Mapping target signatures via partial unmixing of AVIRIS data,” in Proc. Summ. JPL Airborne Earth Sci. Workshop, vol. 1, Pasadena, CA, Dec. 9-14, 1995, pp. 23–26.
[4] M. E. Winter, “N-findr: An algorithm for fast autonomous spectral end-member determination in hyperspectral data,” in Proc. SPIE Conf. Imaging Spectrome-
try, Pasadena, CA, Oct. 1999, pp. 266–275.
[5] ——, “A proof of the N-FINDR algorithm for the automated detection of endmembers in a hyperspectral image,” in Proc. SPIE Conf. Algorithms and Tech-
nologies for Multispectral, Hyperspectral, and Ultraspectral Imagery, vol. 5425, Aug. 2004, pp. 31–41.
[6] J. M. P. Nascimento and J. M. B. Dias, “Vertex component analysis: A fast algorithm to unmix hyperspectral data,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898–910, Apr. 2005.
[7] A. Ifarraguerri and C.-I. Chang, “Multispectral and hyperspectral image analysis with convex cones,” IEEE Trans. Geosci. Remote Sens., vol. 37, no. 2, pp. 756–
770, Mar. 1999.
[8] D. Heinz and C.-I. Chang, “Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery,” IEEE Trans. Geosci.
Remote Sens., vol. 39, no. 3, pp. 529–545, Mar. 2001.
[9] A. Zymnis, S.-J. Kim, J. Skaf, M. Parente, and S. Boyd, “Hyperspectral image unmixing via alternating projected subgradients,” in 41st Asilomar Conference
on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 4-7, 2007, pp. 1164–1168.
[10] M. Berman, H. Kiiveri, R. Lagerstrom, A. Ernst, R. Dunne, and J. F. Huntington, “ICE: A statistical approach to identifying endmembers in hyperspectral
images,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 10, pp. 2085–2095, Oct. 2004.
[11] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature, vol. 401, pp. 788–791, Oct. 1999.
[12] V. P. Pauca, J. Piper, and R. J. Plemmons, “Nonnegative matrix factorization for spectral data analysis,” Linear Algebra Appl., vol. 1, no. 416, pp. 29–47, 2006.
[13] N. Dobigeon, S. Moussaoui, M. Coulon, J.-Y. Tourneret, and A. O. Hero, “Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery,”
IEEE Trans. Signal Processing, vol. 57, no. 11, pp. 4355–4367, Sep. 2009.
[14] M. D. Craig, “Minimum-volume transforms for remotely sensed data,” IEEE Trans. Geosci. Remote Sens., vol. 32, no. 3, pp. 542–552, May 1994.
[15] H. Akaike, “Information theory and an extension of the maximum likelihood principle,” in Proc. 2nd Intermational Symposim on Information Theory, Tsahkadsor,
Armenian SSR, 1972, pp. 267–281.
[16] J. Rissanen, “Modeling by shortest date description,” Automatica, vol. 6, no. 14, pp. 465–471, 1978.
[17] C.-I. Chang and Q. Du, “Estimation of number of spectrally distinct signal sources in hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 42,
no. 3, pp. 608–619, Mar. 2004.
[18] J. M. Bioucas-Dias and J. M. P. Nascimento, “Hyperspectral subspace identification,” IEEE Trans. Geosci. Rem. Sens., vol. 46, no. 8, pp. 2435–2445, 2008.
[19] N. Keshava and J. Mustard, “Spectral unmixing,” IEEE Signal Process. Mag., vol. 19, no. 1, pp. 44–57, Jan. 2002.
[20] M. T. Eismann and R. C. Hardie, “Application of the stochastic mixing model to hyperspectral resolution enhancement,” IEEE Trans. Geosci. Remote Sens.,
vol. 42, no. 9, pp. 1924–1933, Sep. 2004.
[21] J. W. Boardman, “Automating spectral unmixing of AVIRIS data using convex geometry concepts,” in Proc. Summ. 4th Annu. JPL Airborne Geosci. Workshop,
vol. 1, Dec. 9-14, 1993, pp. 11–14.
[22] ——, “Geometric mixture analysis of imaging spectrometry data,” in Proc. IEEE International Geoscience and Remote Sensing Symposium, vol. 4, Pasadena, CA,
Aug. 8-12, 1994, pp. 2369–2371.
[23] T.-H. Chan, C.-Y. Chi, Y.-M. Huang, and W.-K. Ma, “A convex analysis based minimum-volume enclosing simplex algorithm for hyperspectral unmixing,” IEEE Trans. Signal Processing, vol. 57, no. 11, pp. 4418–4432, Nov. 2009.
[24] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univ. Press, 2004.
[25] T.-H. Chan, W.-K. Ma, C.-Y. Chi, and Y. Wang, “A convex analysis framework for blind separation of non-negative sources,” IEEE Trans. Signal Processing,
vol. 56, no. 10, pp. 5120–5134, Oct. 2008.
[26] M. O. Smith, P. E. Johnson, and J. B. Adams, “Quantitative determination of mineral types and abundances from reflectance spectra using principal component analysis,” Journal Geophys. Res., vol. 90, no. 2, pp. C797–C804, Oct. 1985.
[27] T. Lange, M. Braun, V. Roth, and J. Buhmann, “Stability-based model selection,” in Proc. Neural Information Processing Systems Workshop, vol. 15,
Vancouver, Canada, Dec. 9-14, 2002, pp. 617–624.
[28] H. W. Kuhn, “The Hungarian method for the assignment method,” Naval Re- search Logistics Quarterly, vol. 1, no. 2, pp. 83–97, 1955.
[29] D. Hammarwall, M. Bengtsson, and B. Ottersten, “Impact of initialization on design of endmember extraction algorithms,” IEEE Trans. Signal Process., vol. 56, no. 3, pp. 1188–1204, Mar. 2008.
[30] C.-I. Chang, C.-C. Wu, W.-M. Liu, and Y.-C. Quyang, “A new growing method for simplex-based endmember extraction algorithm,” IEEE Trans. Geosci. Re-
mote Sens., vol. 44, no. 10, pp. 2804–2819, Oct. 2006.
[31] Y. Wang, L. Guo, and N. Liang, “Using a new search strategy to improve the performance of n-findr algorithm for endmember determination,” in Proc. Inter-
national Congress on Image and Signal Processing, Tianjin, China, Oct. 2009, pp. 17–19.
[32] R. N. Clark, G. A. Swayze, A. Gallagher, T. V. King, and W. M. Calvin, “The U.S. geological survey digital spectral library: Version 1: 0.2 to 3.0 μm,” in U.S.
Geol. Surv., Open File Report 93-592, 1993.
[33] S. J. Hook, J. J. Myers, K. J. Thome, M. Fitzgerald, and A. B. Kahle, “The
modis/aster airborne simulator (master)- a new instrument for earth science studies,” Remote Sensing of Environment, vol. 76, no. 1, pp. 93–1023, 2001.