簡易檢索 / 詳目顯示

研究生: 王御多
Wang, Yu-To
論文名稱: 超光譜影像中基於P次範數之最純像素鑑別與基於重生性模型階數之選擇
P-norm Based Purest Pixel Identification and Reproducibility Based Model Order Selection in Hyperspectral Images
指導教授: 祁忠勇
Chi, Chong-Yung
詹宗翰
Chan, Tsung-Han
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 47
中文關鍵詞: 高光譜分解重生性假設檢定端元
外文關鍵詞: hyperspectral unmixing, reproducibility, hypothesis testing, endmembers
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在超光譜遙感中,分解一個數據立方體(data cube)成為不同物質的頻譜特徵(端元(endmembers))和其相對應的豐度分數(abundance fractions),在分析固體表面礦物成分,扮演著非常重要的角色。一個純像素是指一個像素是完全的由一個物質的端元所構成,而大部分現存的高光譜分解方法是基於純像素假設的線性混和模型。本論文主要分兩大部分,首先,我們提出了一個估測端元的方法,適用於純像素條件成立的情形,稱之為P 次範數之最純像素鑑別(P-norm based
    purest pixel identification (Tri-P))。此演算法是基於P 次範數以及正交投影的觀念。而後,根據已估測到的端元,我們可以使用倒置程序(inversion process)去找到相對應的豐度分數。然而,現存所有的超光譜分解的方法,包括我們所提出的Tri-P,需已知端元的個數為前提。因此,本篇論文的第二部分,提出一個估測端元個數的方法,稱之為基於重生性(reproducibility)模型階數之選擇(reproducibility based model order selection (RMOS))。此演算法是基於Tri-P 演算法以及重生性的概念,以估測端元個數。此外,在模型階數選擇中,我們知道一個好的方法去衡量重生性是非常重要。為了去更可靠地度量重生性,我們提出了一個結合Neyman-Pearson 假設檢定(Hypothesis testing)方法以量化重生性。最後,我們進行 Monte Carlo 模擬以及真實超光譜影像實驗,並和其它基於純像素假設的方法做比較,以展示所提出Tri-P 演算法有較低的運
    算複雜度,以及RMOS 有較佳模型階數選擇的效能。


    Chinese Abstract Abstract Acknowledgments List of Figures List of Tables List of Notations 1 Introduction to Hyperspectral Imaging 2 Signal Model, Assumptions and Dimension Reduction 2.1 Dimension Reduction via Convex Geometry 3 P-norm Based Purest Pixel Identification Algorithm 4 Reproducibility Based Model Order Selection 5 Neyman-Pearson Hypothesis Based Reproducibility Measure 6 Simulation Results 6.1 Synthetic Data Generation 6.2 Performance Measure 6.3 Monte Carlo Simulations for Various P-norm Based Tri-Ps and Different SNRs 6.4 Monte Carlo Simulations for Various Algorithms and Different SNRs 6.5 Monte Carlo Simulations for Various Algorithms and Different Number of Sources 6.6 Monte Carlo Simulations for Various Algorithms and Different Number of Pixels 6.7 Monte Carlo Simulations to Estimate Number of Endmembers for Different SNRs 6.8 Real Data Tests with Tri-P Algorithm and RMOS 6.8.1 Au-Ku Plantation Area Experiments 6.8.2 AVIRIS Experiments 7 Conclusions Bibliography

    [1] G. Shaw and D. Manolakis, “Signal processing for hyperspectral image exploitation,”IEEE Signal Process. Mag., vol. 19, no. 1, pp. 12–16, Jan. 2002.
    [2] T.-H. Chan, W.-K. Ma, C.-Y. Chi, and Y. Wang, “A convex analysis based criterion for blind separation of non-negative sources,” in Proc. IEEE International
    Conference on Acoustics, Speech, and Signal Processing, Honolulu, Hawaii, April 15-20, 2007, pp. 961–964.
    [3] J. W. Boardman, F. A. Kruse, and R. O. Green, “Mapping target signatures via partial unmixing of AVIRIS data,” in Proc. Summ. JPL Airborne Earth Sci. Workshop, vol. 1, Pasadena, CA, Dec. 9-14, 1995, pp. 23–26.
    [4] M. E. Winter, “N-findr: An algorithm for fast autonomous spectral end-member determination in hyperspectral data,” in Proc. SPIE Conf. Imaging Spectrome-
    try, Pasadena, CA, Oct. 1999, pp. 266–275.
    [5] ——, “A proof of the N-FINDR algorithm for the automated detection of endmembers in a hyperspectral image,” in Proc. SPIE Conf. Algorithms and Tech-
    nologies for Multispectral, Hyperspectral, and Ultraspectral Imagery, vol. 5425, Aug. 2004, pp. 31–41.
    [6] J. M. P. Nascimento and J. M. B. Dias, “Vertex component analysis: A fast algorithm to unmix hyperspectral data,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898–910, Apr. 2005.
    [7] A. Ifarraguerri and C.-I. Chang, “Multispectral and hyperspectral image analysis with convex cones,” IEEE Trans. Geosci. Remote Sens., vol. 37, no. 2, pp. 756–
    770, Mar. 1999.
    [8] D. Heinz and C.-I. Chang, “Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery,” IEEE Trans. Geosci.
    Remote Sens., vol. 39, no. 3, pp. 529–545, Mar. 2001.
    [9] A. Zymnis, S.-J. Kim, J. Skaf, M. Parente, and S. Boyd, “Hyperspectral image unmixing via alternating projected subgradients,” in 41st Asilomar Conference
    on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 4-7, 2007, pp. 1164–1168.
    [10] M. Berman, H. Kiiveri, R. Lagerstrom, A. Ernst, R. Dunne, and J. F. Huntington, “ICE: A statistical approach to identifying endmembers in hyperspectral
    images,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 10, pp. 2085–2095, Oct. 2004.
    [11] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature, vol. 401, pp. 788–791, Oct. 1999.
    [12] V. P. Pauca, J. Piper, and R. J. Plemmons, “Nonnegative matrix factorization for spectral data analysis,” Linear Algebra Appl., vol. 1, no. 416, pp. 29–47, 2006.
    [13] N. Dobigeon, S. Moussaoui, M. Coulon, J.-Y. Tourneret, and A. O. Hero, “Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery,”
    IEEE Trans. Signal Processing, vol. 57, no. 11, pp. 4355–4367, Sep. 2009.
    [14] M. D. Craig, “Minimum-volume transforms for remotely sensed data,” IEEE Trans. Geosci. Remote Sens., vol. 32, no. 3, pp. 542–552, May 1994.
    [15] H. Akaike, “Information theory and an extension of the maximum likelihood principle,” in Proc. 2nd Intermational Symposim on Information Theory, Tsahkadsor,
    Armenian SSR, 1972, pp. 267–281.
    [16] J. Rissanen, “Modeling by shortest date description,” Automatica, vol. 6, no. 14, pp. 465–471, 1978.
    [17] C.-I. Chang and Q. Du, “Estimation of number of spectrally distinct signal sources in hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 42,
    no. 3, pp. 608–619, Mar. 2004.
    [18] J. M. Bioucas-Dias and J. M. P. Nascimento, “Hyperspectral subspace identification,” IEEE Trans. Geosci. Rem. Sens., vol. 46, no. 8, pp. 2435–2445, 2008.
    [19] N. Keshava and J. Mustard, “Spectral unmixing,” IEEE Signal Process. Mag., vol. 19, no. 1, pp. 44–57, Jan. 2002.
    [20] M. T. Eismann and R. C. Hardie, “Application of the stochastic mixing model to hyperspectral resolution enhancement,” IEEE Trans. Geosci. Remote Sens.,
    vol. 42, no. 9, pp. 1924–1933, Sep. 2004.
    [21] J. W. Boardman, “Automating spectral unmixing of AVIRIS data using convex geometry concepts,” in Proc. Summ. 4th Annu. JPL Airborne Geosci. Workshop,
    vol. 1, Dec. 9-14, 1993, pp. 11–14.
    [22] ——, “Geometric mixture analysis of imaging spectrometry data,” in Proc. IEEE International Geoscience and Remote Sensing Symposium, vol. 4, Pasadena, CA,
    Aug. 8-12, 1994, pp. 2369–2371.
    [23] T.-H. Chan, C.-Y. Chi, Y.-M. Huang, and W.-K. Ma, “A convex analysis based minimum-volume enclosing simplex algorithm for hyperspectral unmixing,” IEEE Trans. Signal Processing, vol. 57, no. 11, pp. 4418–4432, Nov. 2009.
    [24] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univ. Press, 2004.
    [25] T.-H. Chan, W.-K. Ma, C.-Y. Chi, and Y. Wang, “A convex analysis framework for blind separation of non-negative sources,” IEEE Trans. Signal Processing,
    vol. 56, no. 10, pp. 5120–5134, Oct. 2008.
    [26] M. O. Smith, P. E. Johnson, and J. B. Adams, “Quantitative determination of mineral types and abundances from reflectance spectra using principal component analysis,” Journal Geophys. Res., vol. 90, no. 2, pp. C797–C804, Oct. 1985.
    [27] T. Lange, M. Braun, V. Roth, and J. Buhmann, “Stability-based model selection,” in Proc. Neural Information Processing Systems Workshop, vol. 15,
    Vancouver, Canada, Dec. 9-14, 2002, pp. 617–624.
    [28] H. W. Kuhn, “The Hungarian method for the assignment method,” Naval Re- search Logistics Quarterly, vol. 1, no. 2, pp. 83–97, 1955.
    [29] D. Hammarwall, M. Bengtsson, and B. Ottersten, “Impact of initialization on design of endmember extraction algorithms,” IEEE Trans. Signal Process., vol. 56, no. 3, pp. 1188–1204, Mar. 2008.
    [30] C.-I. Chang, C.-C. Wu, W.-M. Liu, and Y.-C. Quyang, “A new growing method for simplex-based endmember extraction algorithm,” IEEE Trans. Geosci. Re-
    mote Sens., vol. 44, no. 10, pp. 2804–2819, Oct. 2006.
    [31] Y. Wang, L. Guo, and N. Liang, “Using a new search strategy to improve the performance of n-findr algorithm for endmember determination,” in Proc. Inter-
    national Congress on Image and Signal Processing, Tianjin, China, Oct. 2009, pp. 17–19.
    [32] R. N. Clark, G. A. Swayze, A. Gallagher, T. V. King, and W. M. Calvin, “The U.S. geological survey digital spectral library: Version 1: 0.2 to 3.0 μm,” in U.S.
    Geol. Surv., Open File Report 93-592, 1993.
    [33] S. J. Hook, J. J. Myers, K. J. Thome, M. Fitzgerald, and A. B. Kahle, “The
    modis/aster airborne simulator (master)- a new instrument for earth science studies,” Remote Sensing of Environment, vol. 76, no. 1, pp. 93–1023, 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE