研究生: |
陳聖文 |
---|---|
論文名稱: |
平板型閉迴路脈衝式熱管性能之研究 On the Performance of Flat-Plate Closed-Loop Pulsating Heat Pipes |
指導教授: | 許文震 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 106 |
中文關鍵詞: | 平板型閉迴路脈衝式熱管 、振盪式熱管 |
外文關鍵詞: | flat-plate pulsating heat pipes, oscillating heat pipes |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因脈衝式熱管無需毛細結構,吸引了許多學者在此被動式兩相流散熱增益機制之研究。近年來,平板型脈衝式熱管之特性應用在均溫板上,是一項相當具有競爭力之被動式散熱元件。本文研究利用鋁平板加工閉迴路流道, 矩形流道之截面積為 1.5mmx2mm, 水力直徑為1.714mm,覆蓋上透明壓克力板,以建立可視化模組, 工作流體為純水。利用高速攝影機,觀測在不同熱負載下,兩相流運動型態對蒸發端溫度之影響,及其有效熱傳之方式,實際觀察到兩相流開始穩定循環流動時,將有最佳熱傳性能。另外製作相同流道之紅銅平板型閉迴路脈衝式熱管,平板尺寸為112mmx48mmx4mm,工作流體為純水,實際量測熱傳性能,在最佳填充率50%及操作角度90°時,可得系統總熱阻為0.52(°C/W),最大熱傳量為100W。此平板型脈衝式熱管之操作角度極限為20°,當操作角度低於20°時,兩相流無法順利產生振盪以達有效熱傳,因此熱傳接近金屬之熱傳導。最後,本文由可視化模組之經驗,提出平板型脈衝式熱管未來可行之改善方式。
Due to the lack of wick structures, Pulsating Heat Pipes (PHPs) have drawn the attention of many researchers for enhancing heat transfer through passive two-phase flow heat transfer mechanisms. The characteristics of flat-plate closed-loop pulsating heat pipes are recently applied on spreaders and are viewed as competitive passive heat transfer devices. In the present study, flat-plate PHP structures (rectangular cross-section area are 1.5mmx2mm, hydraulic diameter =1.714mm), which are directly machined onto an aluminum substrate (110mmx44mmx3mm) and are covered by an acrylic plate, are made for visualization study. The working fluid is DI water. By using a high-speed video camera, the effects of two-phase flow patterns on the evaporator temperature and the heat transfer mechanism for varied heat load are investigated. The optimal performance of heat transfer occurs when a steadily circulating flow pattern appears. To further examine the thermal performance, a flat-plate PHP made of copper(112mmx48mmx4mm) with the same groove dimensions as that for visualization study is made for the problem of interest. It is found that, with a filling ratio of 50% and a tilting angle of 90°, the optimal performance yields an overall thermal resistance of 0.52(°C/W) and a maximum heat capacity of 100W. The operation limit of the tilting angle is 20° below which oscillating two-phase flows disappear and the heat transfer mechanism approximately becomes a process of pure conduction. Finally, this thesis proposes some workable ways to improve the visualization study of flat-plate PHPs in the future.
[1]R. S. Gauger, “Heat Transfer Devices,” U.S. Patent 2, 350, 348, 1944.
[2]G. M. Grover, “U.S. Patent No. 3229759,” 1963.
[3]http://www.intel.com/
[4]H. Akachi, “U.S. Patent No. 4921041,” 1990.
[5]Suo, M., Griffith, P., “Two-Phase Flow in Capillary Tubes,” Transactions of the ASME, pp. 576-582, September, 1964.
[6]H. Akachi, “U.S. Patent No. 5219020,” 1993.
[7]H. Akachi, “Looped Capillary Heat Pipe,” Japanese Patent, 1994, No. Hei6-97147.
[8]H. Akachi, F. Polasek, and P. Stulc, “Pulsating Heat Pipe,” Proc. 5th Int. Heat Pipe Symposium, Melbourne, Australia, 1996., pp. 208-217.
[9]H. L. Wook, S. J. Hyun, H. K. Jong, “Flow Visualization of Oscillating Capillary Tube Heat Pipe,” 11th International Heat Pipe Conference, Japan, Vol. 2, pp. 166-169, 1999.
[10]K. Gi, F. Sato, S. Meazawa, “Flow Visualization Experiment on Oscillating Heat Pipe,” 11th International Heat Pipe Conference, Japan, Vol. 2, pp. 149-153, 1999.
[11]W. Lee, H. Jung, H. S., and Kim, J. S., “Flow Visualization of Oscillating Tube Heat Pipe,” Proc. Of the 11th Int. Heat Pipe Conf., Japan Association for Heat Pipes, Tokyo, Japan, 99.131-136, 1999.
[12]M. Hosoda, S. Nishio, R. Shirakashi, “Study of Meandering Closed-Loop Heat-Transport Device,” JSME Int. J., Vol. 42/4, pp. 737-744, 1999.
[13]S. Nagata, R. Shirakashi, S. Nishio, “Closed-Loop Heat-Transport Tube,” 第三十六回日本熱傳演講論文集, pp. 675-676, 1999.
[14]M. Misale, M. Forgheri, “ Influence of Pressure Drops on the Behavior of a Single-Phase Natural Circulation Loop : Preliminary Results,” Int. Comm. Heat and Mass Transfer, Vol. 41, No. 8-9, pp. 1075-1086, 1999.
[15]M. Groll, et al., “Visualization of Thermofluiddynamic Phenomena in Flat Plate Closed Loop Pulsating Heat Pipes,” Proc. 6th Int. Heat Pipe Symposium, Chiang Mai, 2000.
[16]S. Khandekar, and M. Groll, “Thermofluiddynamic Study of Flat Plate Closed Loop Pulsating Heat Pipes,” Microscale Thermophysical Engineering, Taylor and Francis, ISSN 1089-3954, Vol.6, No. 4, pp. 303-318, 2002.
[17]S. Meazawa, “Heat Pipe : Its Origin, Development and Present Situation,” Proceeding of the 6th Int. Heat Pipe Sym. Chiang Mai, 2000.
[18]B. Tong, T. Wong, and K. Ooi, “Closed-Loop Pulsating Heat Pipe,” Applied Thermal Engineering, Vol. 21, pp.1845-1862, 2001.
[19]S. Nishio, “Thermal Performance of SEMOS Heat Pipes,” Proc. 12th Int. Heat Transfer Conf., Grenoble, France, ISBN 2-84299-307-1 pp. 477-482, 2002.
[20]S. Khandekar, M. Schneider, and M. Groll, “Mathematical Modeling of Pulsating Heat Pipes : State of the Art and Future Challenges,” Proc. 5th ASME/ISHMT Joint Int. Heat and Mass Transfer Conf., Tata McGrew Hill, Kolkata, ISBN-0-07-047443-5, pp. 856-862, 2002.
[21]M.Groll, et al., “Pulsating Heat Pipes : Thermo-fluidic Characteristics and Comparative Study with Single Phase Thermosyphon,” Proc. 12th Int. Heat Transfer Conf., Grenoble, 2002.
[22]S. Khandekar, X. Cui, and M. Groll, “Thermal Performance Modeling of Pulsating Heat Pipes by Artificial Neural Network,” Proc. 12th Int. Heat Pipe Conf., Moscow, pp. 215-219, 2002.
[23]M. Groll, and S. Khandekar, “Pulsating Heat Pipes : A Challenge and Still Unsolved Problem in Heat Pipe Science,” Archives of Thermodynamics, Begell House, ISBN 1231-0956, Vol. 23/4, pp. 17-28, 2002.
[24]S. Khandekar, M. Groll, “Understanding Operational Regimes of Pulsating Heat Pipes : An Experimental Study,” Applied Thermal Engineering, Elsevier Science, Vol. 23, No. 6, pp. 707-719, 2003.
[25]M. Groll, et al., “Closed Loop Pulsating Heat Pipes-Part A : Parametric Experimental Investigations, ” Applied Thermal Engineering, Elsevier Science, ISSN 1359-4311,2003.
[26]M. Groll, et al., “Closed Loop Pulsating Heat Pipes-Part B : Visualization and Semi-Empirical Modeling,” Applied Thermal Engineering, Elsevier Science, ISSN 1359-4311,2003.
[27]M. Groll, and S. Khandekar, “Pulsating Heat Pipes : Progress and Prospects,” Proc. 3th Int. Conf. On Energy and Environment, Shanghai, 2003.
[28]S. Khandekar, M. Groll, “On the Definition of Pulsating Heat Pipes : An Overview,” Proc. 5th Minsk Int. Seminar, Minsk, Belarus, 2003.
[29]S. Khandekar, M. Groll, “Operational Characteristics of Flat Plate Closed Loop Pulsating Heat Pipes,” Proc. Of the 13th International Heat Pipe Conf., China, Shanghai, pp. 291-297, 2004.
[30]林益邦,”脈衝式熱管之製造與測試”,碩士論文,國立台北科技大學,2004。
[31]J. L. Xu, et al., “High Speed Flow Visualization of a Closed Loop Pulsating Heat Pipe,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 3338-3351, 2005.
[32]R. Dobson, T. and Harm, T. M., “Lumped Parameter Analysis of Closed and Open Oscillatory Heat Pipes,” 11th Int. Heat Pipe Conf., Tokyo, 12-16 Sept., 1999.
[33]Rittidech, S., Terdtoon, P., Murakami, M., Kamonpet, P., Jompakdee, W., “Correlation to Predict Heat Transfer Characteristics of a Closed-end Oscillating Heat Pipe at Normal Operating Condition,” Applied Thermal Engineering, pp.497-510, 2003.
[34]Schneider, M., Khandekar, S., Schäfer, P., Kulenovic, R., and Groll, M., “Visualisation of Thermofluid-dynamic Phenomena in Flat Plate Closed Loop Pulsating Heat Pipes,” Proceedings of the 6th International Heat Pipe Symposium, Chiang Mai, Thailand, pp.5-9, November, 2000.
[35]Collier, John G., “Convective Boiling and Condensation,” McGraw-Hill, 1981.