簡易檢索 / 詳目顯示

研究生: 王宜代
Wang, I-Tai
論文名稱: 添加微量鈀對錫銀銅鈀/無電鍍鎳金板的微結構、界面反應與衝擊可靠度之影響
Effect of Pd doping on Microstructure, Interfacial Reaction and Impact Reliability in Sn3.0Ag0.5Cu-xPd/ENIG Solder Joints
指導教授: 杜正恭
Duh, Jenq-Gong
口試委員: 陳信文
Chen, Sinn-Wen
吳子嘉
Wu, Albert T
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 91
中文關鍵詞: 錫銀銅銲料鈀參雜衝擊測試無電鍍鎳金板介面反應
外文關鍵詞: SnAgCu solder, Pd doping, Impact test, ENIG, Interfacial reaction
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,為了改善無電鍍鎳浸金(ENIG)中的”黑墊(black pad)”
    問題,無電鍍鎳鈀浸金(ENEPIG)迅速地發展。無電鍍鎳鈀浸金板與
    銲料接合後,無電鍍鈀層迅速的溶入銲料中並且延緩介金屬化合物
    (IMC)的生成。目前有許多文獻,針對無電鍍鎳鈀浸金板與銲料的界
    面反應進行探討,然而,鈀如何影響介金屬化合物的形成以及銲料接
    點的強度仍是未知的。本研究將鈀添加至錫銀銅銲料中,觀察銲料的
    微結構變化。並將銲料與無電鍍鎳金板進行迴焊(reflow),於不同溫
    度下進行熱處理,觀察其生成的介金屬化合物厚度與成分變化。此
    外,利用高速撞擊測試(high-speed impact test)去評估微量鈀摻雜對接
    點可靠度的影響。
    無電鍍鎳浸金板與錫銀銅鈀銲料接合後,鎳原子擴散到銲料中
    並與銲料產生反應,在界面生成高Ni-(Cu,Ni)6Sn5。經過長時間的熱
    處理,銲料中過飽和的銅與鎳擴散到介面,並與錫產生反應,低
    Ni-(Cu,Ni)6Sn5 生成於界面中。鈀的添加可減緩界面(Cu,Ni)6Sn5 的生
    長並且抑制低Ni-(Cu,Ni)6Sn5 的析出,進而促進介金屬化合物的穩定
    性。最後,提出鈀影響界面反應的可能原因並與場發射電子微探儀的
    分析結果相互印證。
    在錫銀銅鈀銲料與無電鍍鎳金板液態反應的過程中,除了
    (Cu,Ni)6Sn5 的析出外,Ni3P 與Ni3SnP 相亦生成在(Cu,Ni)6Sn5 化合物
    下方。隨著反應時間的增加,介金屬化合物的厚度亦隨之增加,其中,
    Ni3P 層的成長甚為快速。在撞擊測試中,Ni3P 的快速生長明顯地降
    低銲料接點的可靠度。摻雜鈀於銲料中,不僅能抑制界面(Cu,Ni)6Sn5
    的生長,亦可以延緩鎳從ENIG 板端的擴散,減低Ni3P 層成長的速
    度,進而有效的提升銲料接點的強度。根據這些研究結果可以得知錫
    銀銅鈀合金是個具有潛力,且適合應用於未來銲料設計的材料。


    Electroless Nickel/Electroless Palladium/Immersion Gold
    (ENEPIG) surface finish has been developed to overcome the “black pad”
    issue of Electroless Nickel/Immersion Gold (ENIG) recently. After
    reflow, the electroless Pd layer of ENEPIG would dissolve into solder
    matrix, which might reduce the growth of IMCs. However, the Pd
    distribution and detailed mechanism how Pd influences the interfacial
    reaction and reliability of solder joints are not yet clear. In the study,
    Sn3.0Ag0.5Cu (SAC305) solder doped with 0~0.5 wt.% Pd was used to
    reflowed with ENIG substrate. Before aging, most Pd atoms would
    dissolve in eutectic phase. After aging, Pd concentrated in Cu6Sn5 and the
    maximal solubility was around 0.16 at.%. In addition, nanoindentation
    testing revealed that the Pd doping would soften Cu6Sn5 phase, and then
    influence the hardness of SAC305-xPd solder.
    In the solid reaction of SAC305-xPd solder and ENIG substrate, Ni
    dissolved into solder and (Cu,Ni)6Sn5 formed at the interface. As the Pd
    concentration increased in the solder, the formation and growth of
    (Cu,Ni)6Sn5 were suppressed. After thermal aging, two types of
    (Cu,Ni)6Sn5 IMC, i.e. high Ni (H) and low Ni (L) were observed at the
    IX
    SAC305-xPd/ENIG interface. As compared to H-(Cu,Ni)6Sn5, more Pd
    dissolved in the L-(Cu,Ni)6Sn5. Besides, Pd doping enhanced the growth
    of H-(Cu,Ni)6Sn5 and slowed down the formation of L-(Cu,Ni)6Sn5,
    which would stabilize the IMCs. Based on the quantitative analysis by
    field emission electron probe microanalyzer (FE-EPMA), the correlation
    between Pd doping and interfacial reaction in solder joints was probed
    and discussed.
    In the liquid reaction of SAC305-xPd solder and ENIG substrate,
    Ni3P and Ni3SnP phases were observed between the (Cu,Ni)6Sn5 and Ni
    substrate. With the increased reflow time, the IMCs grew rapidly,
    especially the Ni3P layer. When Pd was added into the solder, not only
    the formation of interfacial (Cu,Ni)6Sn5 was restrained, but also the Ni
    diffusion from ENIG substrate was delayed. To evaluate the Pd effect on
    the reliability, the impact test was employed. The impact test showed that
    the Pd doping would increase the bonding strength, which was due to the
    reduced Ni3P thickness. The role of Pd in the solder joint reliability was
    addressed and proposed. This study aimed to evaluate the potential
    application of novel Pd-doped lead-free solders for future solder designs.

    Contents List of Tables Figures Caption Abstract Chapter I Introduction 1.1 Background 1.2 Motivation and Goals in This Study Chapter II Literature Review 2.1 Electronic Package 2.2 Solder Bump 2.2.1 SnPb Solder 2.2.2 Lead-Free Solder 2.2.3 SnAgCu Solder with 4th Minor Addition 2.3 Under Bump Metallization 2.3.1 Cu-Based UBM 2.3.2 Ni-Based UBM 2.3.2.1 Electroplated Ni 2.3.2.2 Electroplated Ni-P(EN) 2.3.2.3 Sputtered Ni(V) 2.3.3 Surface Finish 2.3.3.1 ENIG Surface Finish 2.3.3.2 ENEPIG Surface Finish 2.4 Interfacial Reaction in Solder Joints 2.4.1 Interfacial Reaction between Solders and Cu-Based UBM 2.4.2 Interfacial Reaction between Solders and Ni-Based UBM ( Ni-Based Surface Finish) 2.5 Reliability Test in Solder Joint (High-Speed Impact Test) 2.6 Nanoindentation Characterization Chapter III Experimental Procedure 3.1 Sample Fabrication and Preparation 3.2 Analysis Method 3.2.1 Hardness Variation 3.2.2 Morphology Evolution 3.2.3 Composition Analysis 3.2.4 Reliability Test Chapter IV Results and Discussion 4.1 The influence of Pd doping on the microstructure and hardness of solder alloy 4.2 Interfacial reaction and elemental redistribution in Sn3.0Ag0.5Cu -xPd/ENIG solder joints after aging 4.3 Pd effect on the formation of P-rich layer and the impact test of SnAgCu-xPd solder joint with ENIG substrate Chapter V Conclusions References

    References
    1.L.F. Miller, “Controlled collapse reflow chip joining”, IBM J. Res. Develpo. 3 (1969) 239.
    2.J.H. Lau, “Flip chip technologies”, McGraw-Hill, New York, (1996) 26.
    3.G.R. Blackwell, “The electronic packaging handbook”, Boca Raton, Florida: CRC Press, (2000) 4.4.
    4.A.A Liu, H.K. Kim, K.N. Tu and P.A. Totta, “Spalling of Cu6Sn5 spheroids in the soldering reaction of eutectic SnPb on Cr/Cu/Au thin films”. J. Appl. Phys. 80 (1996) 2774.
    5.H.K. Kim, K.N. Tu and P.A. Totta, “Ripening-assisted asymmetric spalling of Cu-Sn compound spheroids in solder joint on Si wafer”, Appl. Phys. Lett. 68 (1996) 2204.
    6.C.E. Ho, R. Zheng, G.L. Luo, A.H. Lin and C.R. Kao, “Formation and resettlement of (AuxNi1-x)Sn4 in solder joints of ball-grid-array packages with the Au/Ni surface finish”, J. Electron. Mater. 29 (2000) 1175.
    7.J.W. Jang, P.G. Kim, K.N. Tu, D.R. Frear and P. Thompson, “Solder reaction-assisted crystallization of electroless Ni-P under bump metallization in low cost flip chip technology”, J. Appl. Phys. 85 (1999) 8456.
    8.B.L. Young and J.G. Duh, “Interfacial reaction and microstructural evolution for electroplated Ni and electroless Ni in the under bump metallurgy with 42Sn-58Bi solder during annealing”, J. Electron. Mater. 30 (2001) 878.
    9.D.R. Frear, J.W. Jang, J.K. Lin and C. Zhang, “Pb-free solders for flip-chip interconnects”, JOM 53 (2001) 1047.
    10.T. Laurila, V. Vuorinen and J.K. Kivilahti, “Interfacial reactions between lead-free solders and common base materials”, Mater. Sci. Eng. R: Rep. 49 (2005) 1.
    11.I.E. Anderson, J.C. Foley, B.A Cook, J. Harringa, R.L. Terpstra and O. Unal, “Alloying effects in near-eutectic Sn-Ag-Cu solder alloys for improved microstructural stability”, J. Electron. Mater 30 (2001) 1050.
    12.K.J. Zeng, R. Stierman, D. Abbott and M. Murtuza, “The root cause of black pad failure of solder joints with electroless Ni/immersion gold plating” JOM. 58 (2006) 75.
    13.K.S. Kim, S.H. Huh and K. Suganuma, “Effects of cooling speed on microstructure and tensile properties of Sn-AgCu alloys”, Mater. Sci. Eng. A 333 (2003) 106.
    14.I.E.Anderson, “Development of Sn-Ag-Cu and Sn-Ag-Cu-X alloys for Pb-free electronic solder applications”, J. Mater Sci: Mater Electron 18 (2007) 55.
    15.J.L. Fang, “Bondability & solderability of neutral electroless gold”, Plat. Surf. Finish. 88 (2001) 44.
    16.P. Snugovsky, P. Arrowsmith and M. Romansky, “Electroless Ni/immersion Au interconnects: investigation of black pad in wire bonds and solder joints”, J. Electron. Mater. 30 (2001) 1262
    17.T.T. Mattila and J.K. Kivilahti, “Failure mechanisms of lead-free chip scale package interconnections under fast mechanical loading”, J. Electron. Mater. 34 (2005) 969.
    18.N. Shaigan, S.N. Ashrafizadeh, M.S.H. Bafghi and S. Rastegari, “Elimination of the corrosion of Ni-P substrates during electroless hold plating”, J. Electrochem. Soc. 152 (2005) C173.
    19.Y.D. Jeon, Y.B. Lee and Y.S. Choi, “Thin electroless Cu/OSP on electroless Ni as a novel surface finish for flip chip solder joints”, Electronic Components and Technology Conference (2006).
    20.H. Roberts and K. Johal, “Lead-free soldering”, Springer, New York, (2007) 221
    21.S.P. Peng, W.H. Wu, C.E. Ho and Y.M. Huang, “Comparative study between Sn37Pb and Sn3Ag0.5Cu soldering with Au/Pd/Ni(P) tri-layer structure”, J. Alloys Compd. 493 (2010) 431.
    22.Y. Oda, M. Kiso and S. Hashimoto, “IMC growth study on Ni-P/Pd/Au film and Ni-P/Au film using Sn/Ag/Cu lead-free solder”, Proceedings of IPC Printed Circuits Expo, (2006)
    23.J. W. Yoon, B. I. Noh, J. H. Yoon, H. B. Kang and S. B. Jung, “Sequential interfacial intermetallic compound formation of Cu6Sn5 and Ni3Sn4 between Sn-Ag-Cu solder and ENEPIG substrate during a reflow process”, J. Alloys Compd. 509 (2011) L153.
    24.C.P. Lin and C.M. Chen, “Solid-state interfacial reactions at the solder joints employing Au/Pd/Ni and Au/Ni as the surface finish metallizations”, Microelectron. Reliab. (2011)
    25.A.M. Yu, J.K. Kim, J.H. Lee and M.S. Kim, “Pd-doped Sn-Ag-Cu-In solder material for high drop/shock reliability”, Mater. Res. Bull. 45 (2010) 359.
    26.R.R. Tummala and E. J. Rymaszewski, “Microelectronics packaging handbook 2nd edition”, Van Nostrand Reihold, New York, (1997).
    27.J.H. Lau, “Ball grid array technology”, McGraw-Hill, New York, (1995).
    28.L. F. Miller, “Controlled collapse reflow chip joining”, IBM J. Res. Develop. 13 (1969) 239
    29.P.A. Totta and R. P. Sopher, “SLT device metallurgy and its monolithic extensions” IBM J. Res. Develop. 13 (1969) 226.
    30.J.H. Lau and S.W.R. Lee, “Chip scale package, CSP: Design, Materials, Process and Applications”, McGraw-Hill, New York, (1999).
    31.K.N. Tu and K. Zeng, “Tin-lead (SnPb) solder reaction in flip chip technology”, Mater. Sci. Eng. R 34 (2001) 1.
    32.C.A. Harper, “Electronic packaging and interconnection handbook, 3rd edition”, McGraw-Hill, New York, (2000).
    33.R.E. Reed-Hill and R. Abbaschian, “Physical metallurgy principles”, PWS, Boston, (1994).
    34.W.R. Lewis, “Notes on soldering”, Tin Research Institute, 66, (1961).
    35.K. Tsukada, “Development of new surface finishing technology for PKG substrate with high bondability”, Proveeding of IEEE/CPMT Advanced Packaging Materials Symposium, (2005)
    36.K. Zeng,R. Stierman, T.C. Chiu, D. Edwards, K.Ano and K.N Tu, “Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its eddect on joint reliability”, J. Appl. Phys. 97 (2005) 024508
    37.P.G. Kim, J.W. Jangm T.Y. Lee and K.N. Tu, “Interfacial reaction and wetting behavior in eutectic SnPb solder on Ni/Ti thin film and Ni foils”, J. Appl. Phys. 86 (1999) 6746.
    38.G. Ghosh, “Kinetics of interfacial reaction between eutectic SnPb solder and Cu/Ni/Pd metallizations”, J. Electron. Mater. 28 (1999) 1238
    39.K. Suganuma, “Environmentally conscious design and inverse manufacturing”, Piscataway, NJ: IEEE, 1999, p. 620
    40.M.E. Loomans and M.E. Fine, “Tin-silver-copper eutectic temperature and composition”, Metal. Mat. Trans. A 31 (2000) 1155
    41.I.E. Anderson and J.L. Harringa, “Elevated temperature aging of solder joints based on Sn-Ag-Cu: effects on joint microstructure and shear strength”, J. Electron. Mater. 33 (2004) 1485
    42.S.K. Kang, W.K. Choi, D.Y. Shih, D.W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith and K.J. Puttlitz, “Ag3Sn plate formation in the solidification of near-ternary eutectic Sn-Ag-Cu”, JOM. 55 (2003) 61
    43.C.L. Yeh, Y.S. Lai, H.C. Chang and T.H. Chen, “Correlation between package-level ball impact test and board-level drop test”, Electronic Components and Technology Conference 2005 Proceedings, p.270.
    44.A. Sharif and Y.C. Chan, “Liquid and solid state interfacial reactions of Sn-Ag-Cu and Sn-In-Ag-Cu solders with Ni-P under bump metallization”, Thin Solid Films 504 (2006) 431
    45.S.K. Kang, D.Y. Shih, D. Leonard, D.W. Henderson, T. Gosselin, S.I. Cho, J. Yu and W.K. Choi, “Controlling Ag3Sn plate formation in near-ternary-eutectic Sn-Ag-Cu solder by minor Zn alloying”, JOM 56 (2004) 34
    46.L. Zhang, S.B. Xue, L.L. Gao, G. Zeng, Z. Sheng, Y. Chen and S.L. Yu, “Effects of rare earths on properties and microstructures of lead-free solder alloys”, J. Mater. Sci: Mater. Electron. 20 (2009) 685
    47.W. Lin and N.C. Lee, “The effects of additives to SnAgCu alloys on microstructure and drop impact reliability of solder joints”, JOM. 59 (2007) 26
    48.F.A. Lowenheim, “Modern electroplating”, 2nd edition, Wiley, New York, (1974)
    49.S.V.S. Tyagi, V.K. Tondon, and S. Ray, “Study of the crystallization behavior of electroless Ni-P film by electron and x-ray diffraction”, Z. Metallkd. 76 (1985) 492
    50.J.H Yeh, “Interfacial reactions and wetting property between electroless Ni in the under bump metallurgy (UBM) and Sn-37Pb solder”, Master Thesis, National Tsing Hua Univeristy, Hsinchu, Taiwan (2000).
    51.C.Y. Liu, K.N. Tu, T.T. Sheng, C.H. Tung, D.R. Frear and P. Elenius, “Electron microscopy of interfacial reaction between eutectic SnPb nd Al/Ni(V)/Cu thin film metallization”, J. Appl. Phys. 87 (2000) 750.
    52.S. Lamprecht, K. Johal, H.J. Schreier and H. Roberts, “Impacts of bulk phosphorous content of electroless nickel layers to solder joint integrity and their use as gold- and aluminum- wire bond surfaces”, Proceedings of SMTA Pan Pacific Microelectronics Symposium (2004)
    53.T.B. Massalski; H. Okamoto, P.R. Subramanian and L. Kacprzak, “Binary alloy phase diagrams”, ASM Int., Materials Park, Ohio, (1990) 1481.
    54.K. Zeng and J.K. Kivilahti, “Use of multicomponent phase diagrams for predicting phase evolution in solder/conductor systems”, J. Electron. Mater. 30 (2001) 35.
    55.C.E. Ho, Y.W. Lin, S.C. Yang, C.R. Kao and D.S. Jiang, “Effects of limited Cu supply on soldering reactions between SnAgCu and Ni”, J. Electron. Mater. 35 (2006) 1017
    56.Y.C. Sohn, J. Yu, S.K. Kang, D.Y. Shih, and T.Y. Lee, “Spalling of intermetallic compound during the reaction between lead-free solders and electroless Ni-P metallization”, J. Mater. Res. 19 (2004) 2428
    57.V. Vuorinen, T. Laurila, H. Yu, and J. K. Kivilahti, “Phase formation between lead-free Sn-Ag-Cu solder and Ni(P)/Au finishes”, J. Appl. Phys. 99 (2006) 023530.
    58.Y.C. Sohn and J. Yu, “Correlation between chemical reaction and brittle fracture found in electroless Ni(P)/immersion gold-solder interconnection” J. Mater. Res. 20 (2005) 1931
    59.K. Suganuma, and K.S. Kim, “The root causes of the “black Pad” Phenomenon and avoidance tactics”, JOM, 60 (2008) 61.
    60.K. Zeng, R. Stierman, D. Abbott and M. Murtuza, “The root cause of black pad failure of solder joints with electroless nickel/immersion gold plating”, JOM, 58 (2006) 75.
    61.G. Milad and M. Orduz, “Surface Finishes in a Lead-Free World- Rolls regulations force alternative formulations, processes”, Met. Finish. 105 (2007) 25.
    62.Y. Oda, M. Kiso, and S. Hashimoto, “IMC growth study on Ni-P/Pd/Au film and Ni-P/Au film using Sn/Ag/Cu lead-free solder”, Proceedings of IPC Printed Circuits Expo (2006)
    63.Y. Oda, M. Kiso, S. Kurosaka, A. Okada, K. Kitajima, S. Hashimoto, and D. Gudeczauskas, “Study of suitable palladium and gold thickness in ENEPIG deposits for lead free soldering and gold wire bonding”, 41st International Sympos
    64.K. Newman, “BGA brittle fracture-alternative solder joint integrity test methods”, Proc. 55th Electronic Components & Technology Conference, Orlando, FL, June (2005) 1194
    65.F. Song, S.W. R. Lee, K. Newman, B. Sykes and S. Clark, ”High-speed solder ball shear and pull tests vs. board level mechanical drop tests: correlation of failure mode and loading speed ” Electronic Components and Technology Conference (2007)
    66.T. Morita, R. Kajiwara, I. Ueno and S. Lkabe, “New methods for estimating impact strength of solder-ball-bonded interfaces in semiconductor packages”, Jpn. J. Appl. Phys. 47 (2008) 6566.
    67.K.J. Wang and J.G. Duh, “Shear and pull testing of Sn-3.0Ag-0.5Cu Solder with Ti/Ni(V)/Cu underbump metallization during aging”, J. Electron. Mater. 38 (2009) 2434
    68.Y. Xu, S. Ou and K.N. Tu, “Measurement of impact toughness of eutectic SnPb and SnAgCu solder joints in ball grid array by nano-impact tester”, J. Mater. Res 23 (2008) 1482.
    69.X. Li and B. Bhushan, “A review of nanoindentation continuous stiffness measurement technique and its applications”, Mater. Charact. 48 (2002) 11
    70.U. Boyuk and N. Marasli, “The microstructure parameters and microhardness of directionally solidified Sn-Ag-Cu eutectic alloy”, J. Alloys Compd. 485 (2009) 264.
    71.L. Xu and J.H.L. Pang, “Nanoindentation on SnAgCu lead-free solder joints and analysis”, J. Electron. Mater. 35 (2006) 2107
    72.W. Peng and M.E. Marques, “Effect of thermal aging on drop performance of chip scale packages with SnAgCu solder joints on Cu pads”, J. Electron. Mater. 36 (2007) 1679
    73.S.K. Seo, S.K. Kang, D.Y. Shi and H.M. Lee, “An investigation of microstructure and microhardnes of Sn-Cu and Sn-Ag solders as functions of alloy composition and cooling rate”, J. Electron. Mater. 38 (2009) 257
    74.R. R. Chromik, R. P. Vinci, S. L. Allen and M. R. Notis, “Nanoindentation measurements on Cu–Sn and Ag–Sn intermetallics formed in Pb-free solder joints”, J. Mater. Res, 18 (2003) 2251
    75.L. Xu and J.H.L. Pang, “Nano-indentation characterization of Ni–Cu–Sn IMC layer subject to isothermal aging”, Thin Solid Films 504 (2006) 362.
    76.H. Tsukamoto, Z. Dong, H. Huang, T. Nishimura and K. Nogita, “Nanoindentation characterization of intermetallic compounds formed between Sn-Cu(-Ni) ball grid arrays and Cu substrates”, Mat. Sci. Enig. B 164 (2009) 44.
    77.C. Yu, J. Lin, P Li, and J. Chen, “First-principles investigation of the structural and electronic properties of Cu6-xNixSn5 (x=0, 1\, 2) intermetallic compounds”, Intermetallics 15 (2007) 1471.
    78.X. Deng, N. Chawia, K.K Chawla and M. Koopman, “Deformation behavior of (Cu,Ag)-Sn intermetallics by nanoindentation”, Acta Mater. 52 (2004) 4291
    79.F. Gao and T. Takemoto, “Effects of addition participation in the interfacial reaction on the growth patterns of Cu6Sn5-based IMCs during reflow process, J. Alloys. Compounds 421 (2006) 283
    80.J.Y. Tsai, Y.C. Hu, C.M. Tsai and C.R. Kao, ‘”A study on the reaction between Cu and Sn3.5Ag solder doped with small amounts of Ni”, J. Electron. Mater. 32(2003) 1203.
    81.M. Mathon, M. Gambino, E. Hayer, M. Gaune-Escard and J.P. Bros, “[Pd-Sn] system: enthalpies of formation of the liquid [Pd+Sn] and heat capacities of PdSn, PdSn2, PdSn3 and PdSn4 compounds”, J. Alloys. Compounds 285 (1999) 123.
    82.C. Yu, J. Liu, H. Lu, P. Li, and J. Chen, “First-principles investigation of the structural and electronic properties of Cu6-xNixSn5 (x=0, 1, 2) intermetallic compounds”, Intermetallics, 15 (2007) 1471.
    83.S.J. Wang and C.Y. Liu, “Kinetic analysis of the interfacial reactions in Ni/Sn/Cu sandwich structure”, J. Electron. Mater. 35 (2006) 1955-1960.
    84.M. Hem Z. Chen and G. Qi, “Solid state interfacial reaction of Sn–37Pb and Sn–3.5Ag solders with Ni–P under bump metallization”, Acta Mater. 52 (2004) 2047.
    85.C. W. Hwang, K. Suganuma, M. Kiso and S. Hashimoto. “Interface microstructure between Ni-P alloy plating and Sn-Ag-(Cu) lead-free solders”, J. Mater. Res. 18 (2003) 2540.
    86.Y. C. Sohn, Jin Yu, S.K. Kand, D.Y. Shih and T.Y. Lee, “Spalling of intermetallic compounds during the reaction between lead-free solders and electroless Ni-P metallization”, J. Mater. Res. 19 (2004) 2428
    87.K. Zeng and K.N. Tu, “Six cases of reliability study of Pb-free solder joints in electronic packaging technology”, Mater. Sci. Eng. R 38 (2002) 55.
    88.I.E. Anderson, J. Walleser and J.L. Harringa, “Observation of nucleation catalysis effects during solidification of SnAgCuX solder joints”, JOM. 59 (2007) 39
    89.M.N. Islam, Y.C. Chan, A. Sharif and M.O Alam, “Comparative study of the dissolution kinetics of electrolytic Ni and electroless Ni-P by the molten Sn3.5Ag0.5Cu solder alloy”, Microelectron. Reliab. 43 (2003) 2031.
    90.Y.C. Sohn and Jin Yu, “Correlation between chemical reaction and brittle fracture found in electroless Ni(P)/immersion gold-solder interconnection”, J. Mater. Res 20 (2005) 1931.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE