研究生: |
藍靜茹 Lan, Ching-Ju |
---|---|
論文名稱: |
結合cos2αsin2ψ X光繞射法與雷射曲率法評估氮化物薄膜內應力梯度研究 Evaluation of stress gradient in nitride thin films by combining cos2αsin2ψ X-ray diffraction and laser curvature methods |
指導教授: |
黃嘉宏
Huang, Jia-Hong 喻冀平 Yu, Ge-Ping |
口試委員: |
黃嘉宏
喻冀平 呂福興 里志偉 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | Residaul stress 、stress gradient 、XRD 、elastic constants 、TiN 、ZrN |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this study, the effective X-ray elastic constant (EXEC) can be obtained by combining two nondestructive methods: laser curvature and cos2αsin2ψ grazing incident X-ray diffraction (cos2αsin2ψXRD) techniques, which was used for the calculation of stress gradient in the thin films. TiN and ZrN thin films were selected as the model systems for the measurement of EXECs and stress gradients. Using cos2αsin2ψXRD at different incident angles on the same specimen, the average strains in the different diffraction volumes were obtained. Under the assumption that EXEC did not change significantly with different penetration depth, the average residual stress in different diffraction volume could be calculated. Then, the a layer-by-layer method was used to reduce the attenuation effect on X-ray stress information, and thus the more specific depth profile of the residual stress in the thin films could be established. The results of residual stress gradient are verified by comparing the average stress of the thin film determined by laser curvature method and the total stress from summarizing the layer stresses measured by XRD. The proposed method can reduce the uncertainties of individually measuring elastic constants and residual stress gradient by different methods, and enhance the efficiency of measuring the in-depth residual stress distribution in the thin films.
[1] R.C. Cozza, D.K. Tanaka, R.M. Souza, Micro-abrasive wear of DC and pulsed DC titanium nitride thin films with different levels of film residual stresses, Surf. Coat. Technol., 201 (2006) 4242-4246.
[2] D.S. Rickerby, A.M. Jones, B.A. Bellamy, INTERNAL-STRESS IN TITANIUM NITRIDE COATINGS - MODELING OF COMPLEX STRESS SYSTEMS, Surf. Coat. Technol., 36 (1988) 661-674.
[3] G.C.A.M. Janssen, F.D. Tichelaar, C.C.G. Visser, Stress gradients in CrN coatings, Journal of Applied Physics, 100 (2006) 093512.
[4] R. Daniel, K.J. Martinschitz, J. Keckes, C. Mitterer, The origin of stresses in magnetron-sputtered thin films with zone T structures, Acta Materialia, 58 (2010) 2621-2633.
[5] J.A. Sue, X-RAY ELASTIC-CONSTANTS AND RESIDUAL-STRESS OF TEXTURED TITANIUM NITRIDE COATING, Surf. Coat. Technol., 54 (1992) 154-159.
[6] J.-Y. Chang, G.-P. Yu, J.-H. Huang, Determination of Young's modulus and Poisson's ratio of thin films by combining sin2ψ X-ray diffraction and laser curvature methods, Thin Solid Films, 517 (2009) 6758-6766.
[7] H.Y. Chen, J.H. Chen, F.H. Lu, Evaluation of Poisson's ratio and Young's modulus of nitride films by combining grazing incidence X-ray diffraction and laser curvature techniques, Thin Solid Films, 516 (2007) 345-348.
[8] P.V. K. F. Badawi, Ph. Goudeau, and P.-O. Renault, Measuring thin film and multilayer elastic constants by coupling in situ tensile testing with x-ray diffraction, APPLIED PHYSICS LETTERS, 80 (2002).
[9] A.J. Perry, J.A. Sue, P.J. Martin, Practical measurement of the residual stress in coatings, Surf. Coat. Technol., 81 (1996) 17-28.
[10] J.D. Kamminga, T.H. de Keijser, R. Delhez, E.J. Mittemeijer, On the origin of stress in magnetron sputtered TiN layers, Journal of Applied Physics, 88 (2000) 6332-6345.
[11] M. Bielawski, Residual stress evaluation in TiN coatings used for erosion protection of aerospace components, in: W. Reimers, S. Quander (Eds.) Residual Stresses Vii, 2006, pp. 867-872.
[12] Z.B. Zhao, J. Hershberger, S.M. Yalisove, J.C. Bilello, Determination of residual stress in thin films: a comparative study of X-ray topography versus laser curvature method, Thin Solid Films, 415 (2002) 21-31.
[13] R. Machunze, G. Janssen, Stress gradients in titanium nitride thin films, Surface and Coatings Technology, 203 (2008) 550-553.
[14] S. Zhao, Y. Yang, J. Li, J. Gong, C. Sun, Effect of deposition processes on residual stress profiles along the thickness in (Ti,Al)N films, Surface and Coatings Technology, 202 (2008) 5185-5189.
[15] A. Molfese, A. Mehta, A. Witvrouw, Determination of stress profile and optimization of stress gradient in PECVD poly-SiGe films, Sens. Actuator A-Phys., 118 (2005) 313-321.
[16] S. Massl, W. Thomma, J. Keckes, R. Pippan, Investigation of fracture properties of magnetron-sputtered TiN films by means of a FIB-based cantilever bending technique, Acta Materialia, 57 (2009) 1768-1776.
[17] S. Massl, H. Kostenbauer, J. Keckes, R. Pippan, Stress measurement in thin films with the ion beam layer removal method: Influence of experimental errors and parameters, Thin Solid Films, 516 (2008) 8655-8662.
[18] D.J. Greving, J.R. Shadiey, E.F. Rybbicki, Effects of Coating Thickness and Residual Stresses on the Bond Strength of ASTM C633-79 Thermal Spray Coating Test Specimens, J. Therm. Spray Technol., 3 (1994) 371-378.
[19] MarcoSebastiani, C. Eberl, E. Bemporad, G.M. Pharr, Depth-resolved residual stress analysis of thin coatings by a new FIB-DIC method, Materials Science and Engineering: A, In Press, Accepted Manuscript.
[20] C.V. Raman, K.S. Krishnan, A New Type of Secondary Radiation, Nature, 121 (1928) 501-502.
[21] T. Englert, G. Abstreiter, J. Pontcharra, Determination of exissting stress in silicon films on sapphire substrate using Raman-spectroscepy, Solid State Electrochem., 23 (1980) 31-33.
[22] K. Brunner, G. Abstreit, B.O. Kolbesen, H.W. Meul, Strain at Si---SiO2 interfaces studied by micro-Raman spectroscopy, J. Appl. Surf. Sci., 39 (1989) 116-126.
[23] V. Paillard, P. Puech, R. Sirvin, S. Hamma, P.R.I. Cabarrocas, Measurement of the in-depth stress profile in hydrogenated microcrystalline silicon thin films using Raman spectrometry, Journal of Applied Physics, 90 (2001) 3276-3279.
[24] S. Veprek, Z. Iqbal, H.R. Oswald, A.P. Webb, Properties of polycrystalline silicon prepared by chemical transport in hydrogen plasma at temperatures between 80 and 400 degrees C J. Phys. C: Solid State Phys., 14 (1981) 295-308.
[25] F.-A. Sarott, Z. Iqbal, S. Veprek, EFFECT OF SUBSTRATE BIAS ON THE PROPERTIES OF MICROCRYSTALLINE SILICON FILMS DEPOSITED IN A GLOW DISCHARGE, Solid State Communications, 42 (1982) 465-468.
[26] C. Ossadnik, S. Veprek, I. Gregora, Thin Solid Films, 337 (1999) 148-151.
[27] V. Paillard, P. Puech, M.A. Laguna, R. Carles, B. Kohn, F. Huisken, Improved one-phonon confinement model for an accurate size determination of silicon nanocrystals, Journal of Applied Physics, 86 (1999) 1921-1924.
[28] Handbook of Measurement of Residual Stresses, Society for Experimental Mechanics, 1996.
[29] C.-S. MAN, W.Y. LU, Towards an acoustoelastic theory for measurement of residual stress, Journal of Elasticity, 17 (1987) 159-182.
[30] C.S. Man, R. Paroni, On the separation of stress-induced and texture-induced birefringence in acoustoelasticity, Journal of Elasticity, 45 (1996) 91-116.
[31] P. Rajagopal, K. Balasubramaniam, C.V. Krishnamurthy, M. Shankar, A new approach to inversion of surface wave dispersion relation for determination of depth distribution of non-uniform stresses in elastic materials, in: D.O. Thompson, D.E. Chimenti (Eds.) Review of Progress in Quantitative Nondestructive Evaluation, Vols 23a and 23b, 2004, pp. 1200-1207.
[32] D. Husson, A PERTURBATION-THEORY FOR THE ACOUSTOELASTIC EFFECT OF SURFACE-WAVES, Journal of Applied Physics, 57 (1985) 1562-1568.
[33] D.S. Hughes, J.L. Kelly, Second order deformation of solids, Phys. Rev., 92 (1953) 1145-1149.
[34] Y. Wali, A. Njeh, T. Wieder, M.H. Ben Ghozlen, The effect of depth-dependent residual stresses on the propagation of surface acoustic waves in thin Ag films on Si, NDT & E International, 40 (2007) 545-551.
[35] K. Goebbels, S. Hirsekorn, A new ultrasonic method for stress determination in textured materials NDT International, 17 (1984) 337-341.
[36] D.I. Crecraft, ULTRASONIC INSTRUMENTATION - PRINCIPLES, METHODS AND APPLICATIONS, Journal of Physics E-Scientific Instruments, 16 (1983) 181-189.
[37] Y. Nakamura, E. Akiba, In-situ X-ray diffraction study on LaNi5 and LaNi4.75Al0.25 in the initial activation process, J. Alloy. Compd., 308 (2000) 309-318.
[38] H. Oettel, R. Wiedemann, Residual stresses in PVD hard coatings, Surf. Coat. Technol., 76 (1995) 265-273.
[39] M. Sugiyama, K. Sugita, Y.P. Wang, Y. Nakano, In situ curvature monitoring for metal-organic vapor phase epitaxy of strain-balanced stacks of InGaAs/GaAsP multiple quantum wells, J. Cryst. Growth, 315 (2011) 1-4.
[40] M. Belousov, B. Volf, J.C. Ramer, E.A. Armour, A. Gurary, In situ metrology advances in MOCVD growth of GaN-based materials, J. Cryst. Growth, 272 (2004) 94-99.
[41] A. Dadgar, F. Schulze, T. Zettler, K. Haberland, R. Clos, G. Strassburger, J. Blasing, A. Diez, A. Krost, In situ measurements of strains and stresses in GaN heteroepitaxy and its impact on growth temperature, J. Cryst. Growth, 272 (2004) 72-75.
[42] A.T. Wu, C.Y. Tsai, C.L. Kao, M.K. Shih, Y.S. Lai, H.Y. Lee, C.S. Ku, In Situ Measurements of Thermal and Electrical Effects of Strain in Flip-Chip Silicon Dies Using Synchrotron Radiation X-rays (vol 38, pg 2308, 2009), J. Electron. Mater., 38 (2009) 2786-2786.
[43] M. Croft, N. Jisrawi, Z. Zhong, K. Horvath, R.L. Holtz, M. Shepard, M. Lahshmipathy, K. Sadananda, J. Skaritka, V. Shukla, R.K. Sadangi, T. Tsakalakos, Stress gradient induced strain localization in metals: High resolution strain cross sectioning via synchrotron x-ray diffraction, J. Eng. Mater. Technol.-Trans. ASME, 130 (2008).
[44] P.J. Webster, X.D. Wang, G. Mills, Through-thickness strain scanning using synchrotron radiation, in: R.J. Cernik, R. Delhez, E.J. Mittemeijer (Eds.) European Powder Diffraction: Epdic Iv, Pts 1 and 2, Transtec Publications Ltd, Zurich-Uetikon, 1996, pp. 227-232.
[45] H. Ruppersberg, I. Detemple, J. Krier, SIGMA-XX(Z) AND SIGMA-YY(Z) STRESS-FIELDS CALCULATED FROM DIFFRACTION EXPERIMENTS PERFORMED WITH SYNCHROTRON RADIATION IN THE OMEGA-MODE AND PSI-MODE TECHNIQUES, Z. Kristall., 195 (1991) 189-203.
[46] A. Steuwer, J.R. Santisteban, M. Turski, P.J. Withers, T. Buslaps, High-resolution strain mapping in bulk samples using full-profile analysis of energy-dispersive synchrotron X-ray diffraction data, Journal of Applied Crystallography, 37 (2004) 883-889.
[47] G. Chen, D. Singh, O. Eryilmaz, J. Routbort, B.C. Larson, W.J. Liu, Depth-resolved residual strain in MoN/Mo nanocrystalline films, APPLIED PHYSICS LETTERS, 89 (2006).
[48] H.-J. Bunge, Texture Analysis in Material Science, Butterworths, London, 1982.
[49] I.C. Noyan, J.B. Cohen, Residual Stress Springer-Verlag, New York, 1987.
[50] V. Hauk, Structural and Residual Stress Analysis by Nondestructive Methods, Elsevier, Amsterdam, 1997.
[51] E. Macherauch, P. Muller, Z. Angew. Phys., 13 (1961) 305-312.
[52] W.C. Marra, P. Eisenberger, A.Y. Cho, X-RAY TOTAL-EXTERNAL-REFLECTION-BRAGG DIFFRACTION - STRUCTURAL STUDY OF THE GAAS-AL INTERFACE, Journal of Applied Physics, 50 (1979) 6927-6933.
[53] U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen, E.J. Mittemeijer, Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction, Journal of Applied Crystallography, 38 (2005) 1-29.
[54] P. Predecki, X. Zhu, B. Ballard, PROPOSED METHODS FOR DEPTH PROFILING OF RESIDUAL-STRESSES USING GRAZING-INCIDENCE X-RAY-DIFFRACTION (GIXD), in: J.V. Gilfrich, T.C. Huang, C.R. Hubbard, M.R. James, R. Jenkins, G.R. Lachance, D.K. Smith, P.K. Predecki (Eds.) Advances in X-Ray Analysis, Vol 36, Plenum Press Div Plenum Publishing Corp, New York, 1993, pp. 237-245.
[55] C. Genzel, X-ray stress gradient analysis in thin layers - Problems and attempts at their solution, Phys. Status Solidi A-Appl. Res., 159 (1997) 283-296.
[56] C. Genzel, Phys. Status Solidi A-Appl. Res., 146 (1994) 629-637.
[57] C. Quaeyhaegens, G. Knuyt, L.M. Stals, Residual macroscopic stress in highly preferentially oriented titanium nitride coatings deposited on various steel types, J. Vac. Sci. Technol. A-Vac. Surf. Films, 14 (1996) 2462-2469.
[58] J.-H.H. C.-H. Ma, Haydn Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films, 418 (2002) 73-78.
[59] S. Chen, T.V. Baughn, Z.J. Yao, C.L. Goldsmith, A new in situ residual stress measurement method for a MEMS thin fixed-fixed beam structure, J. Microelectromech. Syst., 11 (2002) 309-316.
[60] K. Dahmen, H. Ibach, D. Sander, A finite element analysis of the bending of crystalline plates due to anisotropic surface and film stress applied to magnetoelasticity, Journal of Magnetism and Magnetic Materials, 231 (2001) 74-84.
[61] G.G. Stoney, in: Proc. R. Soc., London, 1909, pp. 172.
[62] W.A. Brantley, J. Appl. Phys., 44 (1973) 534.
[63] Z.B. Zhao, S.M. Yalisove, J.C. Bilello, Stress anisotropy and stress gradient in magnetron sputtered films with different deposition geometries, J. Vac. Sci. Technol. A, 24 (2006) 195-201.
[64] B.B. He, in: Two-Dimensional X-Ray Diffraction, John Wiley & Sons, Inc., 2009, pp. 314.
[65] C.L. Azanza Ricardo, M. D'Incau, P. Scardi, Revision and extension of the standard laboratory technique for X-ray diffraction measurement of residual stress gradients, Journal of Applied Crystallography, 40 (2007) 675-683.
[66] J. Koo, J. Valgur, Layer Growing/Removing Method for the Determination of Residual Stresses in Thin Inhomogeneous Discs, Materials Science Forum, 347-349 (2000) 89-94.
[67] I. Kraus, G. Gosmanoa, On X-ray measurements of residual stresses in materials with lattice strain gradient, Czechoslovak Journal of Physics 39 (1989) 5.
[68] H.K. Tonshoff, J. Ploger, H. Seegers, Determination of Residual Stress Gradients in Brittle Materials Using an Improved Spline Algorithm, Materials Science Forum, 347-349 (2000) 83-88.
[69] V. Hauk, B. Kruger, A New Approach to Evaluate Steep Stress Gradients Principally Using Layer Removal, Materials Science Forum, 347-349 (2000) 80-82.
[70] P. Scherrer, G. Nachr., 2 (1918) 98.
[71] L.V. Azaroff, M.J. Buerger, The Powder Method in X-Ray Crystallography, McGraw-Hill, New York, 1958.
[72] W.C. Oliver, G.M. Pharr, AN IMPROVED TECHNIQUE FOR DETERMINING HARDNESS AND ELASTIC-MODULUS USING LOAD AND DISPLACEMENT SENSING INDENTATION EXPERIMENTS, J. Mater. Res., 7 (1992) 1564-1583.
[73] W. Zhang, Y.L. Yao, I.C. Noyan, J. Manuf, Sci. Eng., 126 (2004) 10.
[74] U. Welzel, P. Lamparter, E.J. Mittemeijer, X-ray diffraction and reflectometry investigation of interdiffusion in sputtered niobium-tungsten bilayers, in: D.E. Laughlin, K.P. Rodbell, O. Thomas, B. Zhang (Eds.) Polycrystalline Metal and Magnetic Thin Films, Materials Research Society, Warrendale, 1999, pp. 147-152.
[75] J.O. Kim, J.D. Achenbach, P.B. Mirkarimi, M. Shinn, S.A. Barnett, Elastic constants of single-crystal transition-metal nitride films measured by line-focus acoustic microscopy, J. Appl. Phys., 72 (1992) 1805-1811.
[76] E. Torok, A.J. Perry, L. Chollet, W.D. Sproul, Young's modulus of TiN, TiC, ZrN and HfN, Thin Solid Films, 153 (1987) 37-43.
[77] H. Holleck, MATERIAL SELECTION FOR HARD COATINGS, J. Vac. Sci. Technol. A-Vac. Surf. Films, 4 (1986) 2661-2669.
[78] in http://www.tecvac.co.uk/coatings01.php.
[79] A.L. Shull, F. Spaepen, Measurements of stress during vapor deposition of copper and silver thin films and multilayers, Journal of Applied Physics, 80 (1996) 6243-6256.
[80] G.C.A.M. Janssen, A.J. Dammers, V.G.M. Sivel, W.R. Wang, Tensile stress in hard metal films, APPLIED PHYSICS LETTERS, 83 (2003) 3287.
[81] H. Kostenbauer, G.A. Fontalvo, M. Kapp, J. Keckes, C. Mitterer, Annealing of intrinsic stresses in sputtered TiN films: The role of thickness-dependent gradients of point defect density, Surf. Coat. Technol., 201 (2007) 4777-4780.
[82] R. H. Oettel, Wiedemann, S. Preiβler, Residual stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation, Surface and Coating Technology (1995).
[83] R.W. Hoffman, STRESS DISTRIBUTIONS AND THIN-FILM MECHANICAL-PROPERTIES, Surf. Interface Anal., 3 (1981) 62-66.
[84] W.D. Nix, B.M. Clemens, Crystallite coalescence: A mechanism for intrinsic tensile stresses in thin films, J. Mater. Res., 14 (1999) 3467-3473.
[85] E. Chason, B.W. Sheldon, L.B. Freund, J.A. Floro, S.J. Hearne, Origin of compressive residual stress in polycrystalline thin films, Phys. Rev. Lett., 88 (2002).