研究生: |
彭瀚竹 Peng, Han-Ju |
---|---|
論文名稱: |
鋱離子摻雜氫氧化銦與氧化銦奈米粒子之結構與光學特性研究 Structural and optical properties of Terbium(III) doped Indium hydroxide and Terbium(IV) doped Indium oxide Nanoparticles |
指導教授: |
蘇雲良
Soo, Yun-Ling |
口試委員: |
張石麟
湯茂竹 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 50 |
中文關鍵詞: | 氫氧化銦 、氧化銦 、鋱離子 、結構 、光學特性 |
相關次數: | 點閱:5 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋱摻雜之氫氧化銦與氧化銦奈米粒子皆由化合物沉澱法製成,以水與二乙二醇作為背景溶劑分別做出平均大小為20奈米與30奈米的氫氧化銦奈米粒子,經攝氏450度通純氧鍛燒一小時後得平均大小為7奈米與9奈米的氧化銦奈米粒子,並改變摻雜物鋱離子之濃度以研究其特性。
首先以X光繞射實驗辨識鋱摻雜之氫氧化銦與氧化銦其晶格結構分別為體心立方結構和屬體心立方錳鐵礦結構,並以Scherrer方程式估算上述之平均粒徑大小,利用穿透式電子顯微鏡投影系列樣品中HH5與DH5奈米粒子的圖像觀察其形貌並與X光繞射實驗做為比對,光致發光實驗中所有HH與DH系列樣品皆有觀察到489奈米 (5D4→7F6)、543奈米(5D4→7F5)、584奈米(5D4→7F4)和621奈米
(5D4→7F3)屬鋱3+離子的f-f躍遷光譜,DH則有屬於氫氧化銦主體中氧空缺所造成的寬帶螢光光譜,在X光近邊精細吸收光譜(XANES)發現鋱摻雜之氫氧化銦經鍛燒後鋱離子價態從3+ →4+的改變,最後X光延伸精細吸收光譜(EXAFS)則排除了鋱離子在主體中形成氧化物和結塊的可能性,並經過非線性擬合結果證實鋱離子在氫氧化銦為鑲嵌在氧化銦中取代了銦離子的結果,也發現鋱離子周圍氧空缺的改變。
我們利用不同背景溶液,改變摻雜鋱離子以間接改變鋱離子周圍的晶格結構,發現氫氧化銦主體螢光確為其中氧空缺所造成,而且鋱離子周圍的氧空缺以受子的形式吸收了鋱離子被激發的電子發光,造成鋱離子螢光強度變弱的結果。
Terbium(III) doped indium hydroxide and Terbium(IV) doped indium oxide nanoparticles were synthesized by chemical compound precipitation. The size of 20nm and 30nm Tb(III) doped In(OH)3 nanoparticles were prepared by using deionized water(H-series) and diethylene glycol(D-series) as solvent respectively. The Tb(IV) doped In2O3 nanoparticles 7nm(H-series) and 9nm(D-series) in diameter were produced through oxygen annealing. The structural and optical properties were studied by changing the doping concentration of terbium ions.
X-ray diffraction(XRD) reveals the body center cubic In(OH)3 and the bixbyite In2O3 structure. The size of nanoparticles were estimate by Scherrer equation. Transmission electron microscopy(TEM) imaged the morphology of sample HH5 and DH5 nanoparticles. It consisted with the size estimation result from XRD pattern. Compared with HH-series sampls, the DH has a broad luminescence band peak induce by oxygen vacancies in photoluminescence pattern. As the peak showed up the intensity of Tb 3+ intra-4f transition luminescence decreased. X-ray absorption near edge structure showed the change of Tb’s ion state form 3+ to 4+. That is the reason there is no luminescence in HO-series and DO-series samples. Extended x-ray absorption fine structure(EXAFS) measurements rule out the possibility of Tb forming oxide or cluster in the host and show Tb atoms are in the interstitial sites in In(OH)3 host and substitute In atoms in In2O3 host.
The preparation in different solvent and adjusting the concentration of dopant is an indirect way to control oxygen vacancies. In DO-series samples there are oxygen vacancies around Tb ion. These defects would play a role as accepter to steal the electrons which were excited from Tb ions and recombine to luminesce. That is how the PL intensity of Tb in DH is weaker than in HH.
[1] Jimin Du, Mino Yang, Seung Nam Cha, Danielle Rhen, Miwon Kang, and Dae Joon
Kang,Crystal Growth & Design, Vol. 8, No. 7, 2312-2317(2008)
[2] Jun Yang, Cuikun Lin, Zhenling Wang, and Jun Lin,
Inorg. Chem. 45, 8973□8979(2006)
[3] Gloria Subías, Jolanta Stankiewicz, Francisco Villuendas, María Pilar Lozano, and
Joaquín García,Physical Review B 79, 094118 (2009)
[4] M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang, and X. F. Wang,
Applied Physics Letters ,Vol 79(2001)
[5] Xiang Yang Kong, and Zhong Lin Wang,
Solid State Communications,128, 1-4(2008)
[6] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt,
Applied Physics Letters ,Vol 68(1996)
[7] G. Wakefielda, H.A. Kerona, P.J. Dobsona, J.L. Hutchison,
Journal of Physics and Chemistry of Solids, 60, 503-508(1999)
[8] Changwen Jia, Erqing Xie, Aihua Peng, Ran Jiang, Fan Ye, Hongfeng Lin, Tao Xu,
Thin Solid Films, 496, 555-559(2006)
[9] A.J. Kenyon,
Progress in Quantum Electronics, 26, 225-284(2002)
[10] D. L. DEXTER,
THE JOURNAL OF CHEMICAL PHYSICS, Vol 21(1953)
[11] B. R. JvuD,
Physical Review, Vol 27(1962)