簡易檢索 / 詳目顯示

研究生: 湯鈞皓
Tang, Chun Hao
論文名稱: 應用於多用戶正交分頻多工六十秭赫通訊系統之低複雜度干擾對齊技術
Low-Complexity Interference Alignment Algorithms for Multi-User MIMO-OFDM Systems over 60 GHz Channels
指導教授: 趙啟超
Chao, Chi chao
口試委員: 楊谷章
林茂昭
邱茂清
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 75
中文關鍵詞: 干擾對齊技術六十秭赫通道模型
外文關鍵詞: interference alignment, 60 GHz channel model
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文裡,我們考慮了多使用者的多輸入多輸出正交分頻多工
    (Multiple-Input-Multiple-Output Orthogonal Frequency Division Multiplexing,
    MIMO-OFDM) 的系統,並模擬由 IEEE 802.15.3c 工作團隊所制定的六十秭赫
    頻帶的通道模型。而多使用者在傳輸過程中會彼此之間造成干擾,而干擾對齊技
    術 (Interference Alignment, IA) 是一種可以降低干擾影響的技術。
    為了降低干擾對齊演算法的複雜度,我們提出了兩種具有低複雜度的干擾對
    齊演算法,混合式干擾對齊 (Mixed Interference Alignment, MIA) 演算法和加權
    混合式干擾對齊 (Weighted Mixed Interference Alignment, WMIA) 演算法。混合
    式干擾對齊演算法是透過傳送端和接收端由不同的準則所設計,而加權混合式干
    擾對齊演算法則是多考慮了使用者之間的權重。我們與既有的演算法做比較,包
    含疊代干擾對齊 (Iterative Interference Alignment, IIA) 演算法、最大訊號干擾雜
    訊比 (Maximum Signal-to-Interference-Plus-Noise Ratio, MSINR) 演算法和最小
    均方誤差 (Minimum Mean Squared Error, MMSE) 演算法,透過模擬分析,可以
    得到我們所提出的演算法會具有比較低的複雜度和相當的效能。
    而在我們所討論疊代方法的干擾對齊技術下,初始值會影響效能,比起多數
    干擾對齊演算法使用隨機的初始值,我們提出了一個具有低運算複雜度的初始值
    方法,稱作 (Relaxed Maximum Desired Signal Power, RMDSP),並且它有更好的
    效能。


    Interference alignment(IA) was proposed recently for suppressing interference to achieving the optimal degree of freedom of an interference channel. For reducing the complexity of IA algorithms, we present two modi ed IA algorithms in this thesis. The first IA algorithm is called the mixed IA(MIA) algorithm, which used diff erent criteria to minimize the leakage interference and mean squared error, for designing the precoding matrices and combining
    matrices, respectively. The MIA algorithm provides lower complexity than the maximum
    signal-to-interference-plus-noiseratio(MSINR) algorithm or the iterative interference alignment(IIA) algorithm, while demonstrating comparable performance. This algorithm results in orthonormal precoding matrices, which possess the advantage of efficient quantization. On the basis of the MIA algorithm, we also propose a weighted mixed IA(WMIA) algorithm, which accounts for the weak user's performance. The WMIA algorithm manages
    interference by di fferent weights to distribute power fairly and it also possesses the advantages of low complexity and orthonormal precoders, similar to the MIA algorithm. However,
    it demonstrates trade-off performance compared with that of the MIA algorithm in diff erent situations.
    The other issue investigated in the thesis is initialization. As IA algorithms do not
    guarantee to achieve the global optimum; hence the initialization is crucial for the performance. We propose an initialization method with low complexity that involves maximizing
    the desired signal power through the gradient descent method.
    In this study, we consider the multi-user multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) interference system. The channel model employed is the 60GHz indoor channel model established by the IEEE802.15.3c task group,
    which includes line-of-sight(LOS) and non-line-of-sight(NLOS) situations.

    Abstract i Contents iii 1 Introduction 1 2 Channel and System Models 4 2.1 Overview of 60 GHz Indoor Channel Model..................4 2.2 MIMO-OFDM System..............................8 3 Interference Alignment Algorithms 17 3.1 Concept of Interference Alignment(IA).....................17 3.2 Iterative Interference Alignment(IIA) Algorithm...............19 3.3 Maximum SINR(MSINR) Algorithm......................22 3.4 Minimum Mean Squared Error(MMSE) Algorithm..............24 4 Mixed Interference Alignment 28 4.1 Mixed Interference Alignment(MIA) Algorithm................28 4.1.1 Transmitter................................28 4.1.2 Receiver..................................29 4.2 Weighted Mixed Interference Alignment(WMIA) Algorithm.........31 4.3 Complexity Analysis...............................34 5 Initialization for Interference Alignment Algorithms 38 5.1 Precoder Initialization..............................38 5.1.1 Receiver Interference Calculated(RIC) Initialization.........38 5.1.2 Maximum Desired Signal Power(MDSP) Initialization........39 5.1.3 Relaxed Maximum Desired Signal Power(RMDSP) Initialization..40 5.2 Complexity Analysis...............................42 6 Simulation Results 43 6.1 Performance Comparison of the Interference Alignment Algorithms.....45 6.2 E ffect of Initialization on Interference Alignment Algorithms.........51 7 Conclusion 71

    [1] http://www.ieee802.org/15/pub/TG3c.html.
    [2] N.Guo,R.C.Qiu,S.S.Mo,and K.Takahashi,"60-GHz millimeter-wave radio:Principle, technology, and new results," EURASIP J. Wireless Commun. and Networking,
    vol.2007,pp.1-8,2007.
    [3] S.A.Jafar and S. Shamai, "Degrees of freedom region of the MIMO X channel," IEEE
    Trans.Inf.Theory, vol.54,no.1,pp.151-170,Jan.2008.
    [4] V.R.Cadambe and S. A. Jafar, "Interference alignment and degrees of freedom of the
    K-user interference channel," IEEE Trans.Inf.Theory, vol.54,no.8,pp.3425-3441,
    Aug. 2008.
    [5] K.Gomadam, V.R.Cadambe, and S.A.Jafar, "A distributed numerical approach to
    interference alignment and applications to wireless interference networks," IEEE Trans.
    Inf. Theory, vol.57,no.6,pp.3309-3322,Jun.2011.
    [6] H.Shen,B.Li,M.Tao,and X.Wang,"MSE-based transceiver designs for the MIMO
    interference channel," IEEE Trans.Wireless Commun., vol.9,no.11,pp.3480-3489,
    Nov.2010.
    [7] S.W.Peters,R.W.Heath,and Jr.,"Cooperative algorithms for MIMO interference
    channels," IEEE Trans. Veh. Technol., vol.60,no.1,pp.206-218,Jan.2011.
    [8] D.A.Schmidt, C.Shi, R.A.Berry, M.L.Honig, and W.Utschick, "Minimum mean
    squared error interference alignment,"in Proc. 43th AsilomarConf. Signals,Syst. Comput., Paci cGrove, CA,Nov.2009,pp.1106-1110.
    [9] I.Santamaria,O.Gonzalez,R.W.Heath,Jr.,and S.W.Peters,"Maximum sum-rate
    interference alignment algorithms for MIMO channels,"in Proc.Global Telecommun.
    Conf., Miami,FL,Dec.2010,pp.1-6.
    [10] M.Yoon,M.S.Kim,and C.Lee, "Decentralized precoding algorithm with weighted SLNR for limitedly coordinated network," IEEE Commun.Lett., vol.16,no.3,pp.
    318-320, Mar.2012.
    [11] W.Cui,K.Niu,W.Wu,and E.Dong, "Robust and fair multiuser downlink precoding
    scheme based on weighted generating interference,"in Proc.Asia-Paci cConf.Com-
    mun., Pattaya,Thailand,Oct.2014,pp.175-179.
    [12] C.Simon and G.Leus, "Feedback quantization for linear precoded spatial multiplexing,"
    EURASIP J. Adv. SignalProcess., vol.2008,pp.1-13,Jan.2008.
    [13] C.-C.Chou,H.-J.Chou,and J.M.Wu, "Exploiting the initial and the final conditions for the alternating minimization algorithm,"in Proc. IEEEInt. Conf. Commum.,
    Budapest,Hungary,Jun.2013,pp.5242-5246.
    [14] S.-K.Yong,etal., "TG3c channel modeling sub-committee final report," IEEE
    doc.:IEEE802.15-07-0584-01-003c, Sep.2010.
    [15] S.Yoon, T.Jeon, and W.Lee, "Hybrid beam-forming and beam-switching for OFDM
    based wireless personal area networks," IEEE J.Sel. Areas Commun., vol.27,no.8,
    pp. 1425-1432,Oct.2009.
    [16] D.H.Brandwood, "A complex gradient operator and its application in adaptive array
    theory," IEEE Proc.FCommun. Radar and SignalProcess., vol.130,no.1,pp.11-16,
    Feb.1983.
    [17] M.Sadek, A.Tarighat, and A.H.Sayed, "A leakage-based precoding scheme for downlink multi-user MIMO channels," IEEE Trans.Wireless Commun., vol.6,no.5,pp.
    1711-1721, May2007.
    [18] M.Pischella and E.Vivier, "Comparison of distributed space and frequency interference
    alignment,"in Proc.IEEEInt.Symp.Personal,Indoor and Mobile Radio Commun.,
    Instanbul,Turkey,Sep.2010,pp.532-537.
    [19] F.R.Farrokhi, G.J.Foschini, A.Lozano, and R.A.Valenzuela, "Link-optimal space-time processing with multiple transmit and receive antennas," IEEE Commun.Lett.,
    vol.5,no.3,pp.85-87,Mar.2001.
    [20] "IEEE standard for information technology-Tele communications and information exchange between systems-Local and metropolitan area networks-Speci c requirements. Part15.3:Wireless medium access control(MAC) and physical layer(PHY)
    speci cations for high rate wireless personal area networks(WPANs) amendment 2:
    Millimeter-wave-based alternative physical layer extension," IEEE Std 802.15.3c-2009
    (Amendment to IEEE Std 802.15.3-2003), pp.c1{187,Oct.2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE