研究生: |
林宜駿 Yi-Jing Lin |
---|---|
論文名稱: |
超寬頻低雜訊放大器設計與分析 Design and Analysis of Ultra-wideband Low Noise Amplifiers |
指導教授: |
徐碩鴻
Shuo-Hung Hsu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 77 |
中文關鍵詞: | 低雜訊放大器 、超寬頻 、雜訊指數 |
外文關鍵詞: | low noise amplifier, ultra-wideband, noise figure |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著快速成長的無線通訊系統需求,在未來需要一種新的方法,且不會影響現存的系統。因此在2002年,由FCC制定了超寬頻系統,其目的在於提供一個低成本、低功率、低複雜度以及低功率消耗的規格。
在本論文之中,主要所探討的領域,即在於將以往的窄頻通訊裡的低雜訊放大器設計,擴展至超寬頻系統之應用。
在第二章裡,本論文先介紹RF接收機的一些規格,並且回顧關於窄頻通訊的低雜訊放大器的設計原理。
在第三章裡,提出了超寬頻放大器的設計理念。並且實作了二個超寬頻低雜訊放大器。
在第四章裡,實現了將共電流放大技巧引入超寬頻低雜訊放大器的設計。並且得到相當良好的量測結果,包含極高的增益,相當低的雜訊指數,同時為省電的設計。
The wireless system is being rapidly proliferated and the growing of capacity in wireless communication requires a new type of wireless communication method which does not affect current systems. In February 2002, the FCC ruled the 7500 MHz spectrum for ultra-wideband radio and the purpose of this new standard is to provide a specification for a low cost, low complexity, low power consumption, high security and high data-rate wireless communication capabilities within the personal operating space.
In this thesis, the main focus is to expand the conventional narrowband LNA design based on currently available 0.18 □m CMOS technology suitable for UWB applications. In chapter 2, the fundamental of RF receiver is presented, and the review of narrowband LNA design is introduced in the last section.
In chapter 3, the design method of ultra-wideband LNA is proposed. In the first section, the basic wideband concept will be introduced. In the following sections, two ultra-wideband low noise amplifiers based on the same circuit topology but two different types of input matching networks are proposed. One is the Chebyshev band-pass filter, and the other is a simple LC high-pass filter. The comparison of measured results indicates that the adoption of a high-pass filter as the input-matching network results in a better noise performance than that of using a band-pass filter. Furthermore, the grounded-coplanar-waveguide (GCPW) configuration of the transmission line is employed in the circuit layout to minimize additional noise caused by the interconnect loss and substrate coupling.
In the chapter 4, the current-reused technique is introduced, and with this technique, a 3.1-10.6 GHz ultra-wideband LNA is proposed. The measured results also demonstrate the feasibilities of achieving high power gain, low power dissipation and very low noise figure simultaneously. Moreover, in order to be suitable for low operating voltage design, an ultra-wideband LNA combining the current-reused technique and folded-cascode structure is presented, and the operating frequency focus on 3-5 GHz for low-band applications. The simulation results also demonstrate the excellent performance of large power gain, good input-matching, very low noise and moderate power consumption.
[1] IEEE 802.15 WPAN HIGH Rate Alternative PHY Task Group 3a (TG3a) [Online]. Available:http://www.ieee802.org/15/pub/TG3a.html.
[2] P. R. Gray and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th ed., New York: John Wiley, 2004.
[3] K. Han, J. Gil, S.-S. Song, J. Han, H. Shin, C.-K. Kim, and K. Lee, “Complete High-Frequency Thermal Noise Modeling of Short-Channel MOSFETs and Design of 5.2-GHz Low Noise Amplifier,” IEEE J. Solid-State Circuits, vol. 4, no. 3, March. 2005.
[4] D. K. Shaeffer and T. H. Lee, “A 1.5-V 1.5-GHz CMOS low-noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, pp. 745–759, May 1997.
[5] T. H. Lee, The Design of CMOS Radio- Frequency Integrated Circuits. Cambridge, U.K.: Cambridge Univ. Press, 2003.
[6] J.-S. Goo, H.-T. Ahn, D. J. Ladwig, Z. Yu, T. H. Lee, and R. W. Dutton, “A Noise Optimization Technique for Integrated Low-Noise Amplifiers,” IEEE J. Solid-State Circuits, vol. 37, no. 8, August 2002.
[7] “First report and order, revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,” FCC, ET Docket 98-153, Feb. 14, 2002.
[8] R. Aiello, “Discrete time PHY proposal,” IEEE 802.15-03/105r0, 2003.
[9] N. Askar, “General atomics PHY proposal,” IEEE. 802.15-03/105r0, 2003.
[10] Y. Greshishchev, P. Schvan, J. L. Showell, M.-L. Xu, J. J. Ojha, and J. E. Rogers, “A fully integrated SiGe receiver IC for 10-Gb/s data rate,” IEEE J.Solid-State Circuits, vol. 35, pp. 1949-1957, Dec. 2000.
[11] J. Cao, M. Green, A. MOmtaz, K. Vakilian, D. Chung, K.-C. Jen, M. Caresosa, X. Wang, W.-G. Tan, Y. Cai, I. Fujimori, and A. Hairapetian, “OC-192 transmitter and receiver in standard 0.18-mm CMOS,” IEEE J. Solid-State Circuits, vol. 37, pp. 1768-1780, Dec. 2002.
[12] H.-T. Ahn and D. J. Allstot, “A 0.5-8.5 GHz fully differential CMOS distributed amplifier,” IEEE J.Solid-State Circuits, vol.37, pp.985-993, Aug. 2002.
[13] R.-C. Liu, K.-L. Deng, and H. Wang, “A 0.6-22 GHz broadband CMOS distributed amplifier,” in IEEE Radio Frequency Integrated Circuits Symp. Dig. Papers, 2003, pp. 103-106.
[14] A. Bevilacqua and A. M. Niknejad, “An ultra-wideband CMOS LNA for 3.1 to 10.6 GHz wireless receiver,” in IEEE ISSCC Dig. Tech. Papers, 2004, pp. 382-383.
[15] A. Ismail and A. Abidi, “A 3 to 10 GHz LNA using a wideband LC-ladder matching network,” in IEEE ISSCC Dig. Tech. Papers, 2004, pp. 384-385.
[16] H. Hashemi and A. Hajimiri, “Concurrent multiband low-noise amplifiers-Theory, design, and applications,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 288-301, Jan. 2002.
[17] C. W. Kim, M. S. Jung, S. G. Lee, “Ultra-wideband CMOS low noise amplifier” Electronics Letters, Vol. 41, pp. 384 – 385, March 2005.
[18] A. Komijani, A. Natarajan, and A. Hajimiri, “A 24-GHz, +14.5-dBm fully integrated power amplifier in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, pp. 1901-1908, Sept. 2005.
[19] C. W. Kim, M. S. Jung, S. G. Lee, “Ultra-wideband CMOS low noise amplifier” Electronics Letters, Vol. 41, pp. 384 – 385, March 2005.
[20] C. Y. Cha and S. G. Lee, “A 5.2-GHz LNA in 0.35 mm CMOS Utilizing Inter-Stage Series Resonance and Optimizing the Substrate Resistance” IEEE J. Solid-State Circuits, Vol. 38, No.4, pp. 669-672, April 2003.
[21] C.-W. Kim, M.-S. Jung, S.-G. Lee, “Ultra-wideband CMOS low noise amplifier” Electronics Letters, Vol. 41, pp. 384 – 385, March 2005.
[22] C.-W. Kim, M.-S. Kang, P. T. Anh, H.-T. Kim, and S.-G. Lee, “An ultra-wideband CMOS low noise amplifier for 3–5-GHz UWB system,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 544-547, Feb. 2005.
[23] A. Bevilacqua, C. Sandner, A. Gerosa, and A. Neviani, “A Fully Integrated Differential CMOS LNA for 3-5-GHz Ultrawideband Wireless Receivers,” IEEE Microwave and Wireless-Component Letters, vol. 16, no. 3, pp. 134-136, March 2006.
[24] C. Grewing, M. Friedrich, G. L. Puma, C. Sandner, S. van Waasen, A. Wiesbauer, and K. Winterberg, “Fully integrated ultra wide band CMOS low noise amplifier,” in Proc. IEEE Eur. Solid-State Circuits Conf., Sep. 2004, pp. 435-438.
[25] S. Iida, K. Tanaka, H. Suzuki, N. Yoshikawa, N. Shoji, B. Griffiths, D. Mellor, F. Hayden, I. Butler, and J. Chatwin, “A 3.1 to 5 GHz CMOS DSSS UWB transceiver for WPANs,” in IEEE ISSCC Tech. Dig., 2005, pp. 214-215.
[26] D. J. Cassan and J. R. Long, “A 1-V transformer-feedback low-noise amplifier for 5–6 GHz wireless LAN in 0.18-□m CMOS,” IEEE J. Solid-State Circuits, vol. 38, pp. 427-435, Mar. 2003.
[27] B. Agarwal, et al., “Broadband feedback amplifier with AlInAs/GasInAs transfer substrate HBT,” Electron. Lett., vol. 34, pp. 1357-1358, June 1998.