簡易檢索 / 詳目顯示

研究生: 吳晟彰
Wu, Cheng-Chang
論文名稱: A Quadrature Sub-harmonic Up-converter with Sideband & Carrier Leakage Calibration
具有側頻帶與載波遺漏校正之次諧波升頻器
指導教授: 謝志成
Hsieh, Chih-Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 121
中文關鍵詞: 次諧波混頻器直接升頻器側頻帶載波遺漏量校正迴路多相位濾波器
外文關鍵詞: sub-harmonic mixer, direct-conversion, sideband, carrier Leakage, calibration loop, poly-phase filter
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In the thesis, a direct-conversion quadrature sub-harmonic mixer with sideband and carrier leakage calibration is proposed for 2.4 GHz ISM (Industrial, Scientific and Medical) band applications. By adopting quadrature double-balanced structure, low carrier leakage is obtained. To perform up-conversion operation, an octet-phase LO signal is required for this I/Q sub-harmonic mixer, which is generated by 2-stage poly-phase filter. The bias currents of the I/Q paths in the input transconductance stage and switching stage are all digitally controllable so that they can be used for I/Q imbalance and carrier leakage calibration.
    To minimize sideband level and carrier leakage, the bias currents of each path are decided by a calibration feedback loop. In this loop, there are an RF power detector, a comparator, and a SAR digital controller. The amplitude levels of the sideband and carrier leakage are extracted by the power detector and compared with a reference signal. According to the comparison result, the SAR controller performs the binary searching algorithm to find the best bias current setting.
    To verify the designed circuits, an experimental chip is fabricated in 0.18-um mixed-mode CMOS technology. The chip area occupies 1.2 mm x 1.3 mm. According to the measurement results, the conversion gain and P1dB of the mixer are -17.5 dB and 11 dBm, respectively. After the mixer is calibrated, the sideband level is reduced to -48.1 dBc. Also the 2xLO leakage drops to -52.1 dBc below the fundamental tone. From an 1.8-V power supply, the quadrature up-conversion mixer totally consumes 40.2 mA current.


    本論文提出一個運用次諧波混頻技巧所設計的正交直接升頻器,應用於2.4 GHz的工科醫用(ISM)頻帶,並具有側頻帶(sideband)以及載波遺漏量(carrier leakage)校正迴路。本電路採用正交雙平衡架構實現,以達到低載波遺漏量。為進行升頻操作,本正交次諧波混頻器需由雙級多相位濾波器(poly-phase filter)來產生一組八相位的本地震盪器(LO)訊號。在輸入轉導級和切換級中,正交電路的偏壓電流皆可採取數位調整的方式來進行正交不平衡和載波遺漏量的校正。
    每個路徑的偏壓電流將被回授校正迴路所決定,以確保能將側頻帶與載波遺漏量最小化。在此迴路中包含射頻功率偵測器、比較器以及循序逼近式暫存數位控制器。側頻帶和載波遺漏量的振幅大小先被功率偵測器取出後,再與參考訊號做比較。根據比較結果,循序逼近式暫存器將進行二分搜尋法來尋找最佳的偏壓電流設定。
    為了驗證本設計電路,一組實驗晶片利用0.18微米混合式訊號CMOS製程來實現。晶片面積共為1.2厘米 □ 1.3厘米。根據量測結果,升頻器的轉換增益以及P1dB各為-17.5 dB和11 dBm。升頻器校正完成後,與輸出訊號主頻率的大小相比,側頻帶訊號降至-48.1dBc,而位於雙倍載波頻率的遺漏訊號則低達-52.1dBc。在1.8V的電源供應之下,此正交升頻器總共消耗了40.2 mA的電流。

    Chapter 1 Introduction 1 1.1. Motivation 1 1.2. Transmitter Architecture 2 1.3. Thesis Organization 4 Chapter 2 Quadrature Up-converter Overview 6 2.1. Up-conversion Mixer Fundamentals 7 2.1.1. Conversion Gain 8 2.1.2. 1-dB Compression Point 9 2.1.3. Third-Order Intercept Point 11 2.1.4. Noise Figure 14 2.1.5. Unwanted Sideband Suppression 15 2.1.6. Unwanted Carrier Suppression 17 2.2. Up-conversion Mixer Topologies 18 2.2.1. Passive Mixer 18 2.2.2. Single-Balanced Mixer 20 2.2.3. Double-Balanced Mixer 21 2.2.4. Sub-Harmonic Mixer 22 2.3. Summary 26 Chapter 3 Quadrature Sub-harmonic Up-converter 27 3.1. Sub-Harmonic Up-conversion Mixer 28 3.1.1. Transconductance Stage 32 3.1.2. Switching Stage 34 3.1.3. Loading stage 37 3.2. Octet-Phase LO Generator 38 3.3. LO Buffer 44 3.4. RF Pre-amplifier 46 3.5. Bias Circuits 47 3.6. Simulation Results 49 3.7. Summary 54 Chapter 4 Sideband & Carrier Leakage Calibration Loop 55 4.1. Sideband Calibration 56 4.1.1. Sideband Detection 60 4.1.2. Calibration Circuits Design 63 4.2. Carrier Leakage Calibration 75 4.2.1. Carrier Leakage Detection 76 4.2.2. Calibration Circuits Design 77 4.3. Simulation Results 78 4.4. Summary 85 Chapter 5 System Implementation and Measurement 86 5.1. System Simulation 86 5.1.1. System Operation State & Timing Diagram 87 5.1.2. Simulation Results 89 5.2. Chip Implementation 91 5.2.1. Design Implementation 91 5.2.2. Measurement Setup 95 5.2.3. Measurement Results 97 5.3. Summary 109 Chapter 6 Conclusion and Future Work 110 6.1. Conclusion 110 6.2. Future Work 111 Appendix 112 Bibliography 115

    [1] H. Y. Tang, “A CMOS Quadrature Sub-Harmonic Up-Mixer with I/Q Calibration, ” NTHU, Oct. 2007.

    [2] B. Razavi, “RF transmitter architectures and circuits,” IEEE Custom Integrated Circuits, May. 1999.

    [3] Abdellatif Bellaouar, “RF Transmitter Architectures for Integrated Wireless Transceivers,” Microelectronics, pp. 25-30, Nov. 1999.

    [4] Behzad Razavi, RF Microelectronics. Prentice Hall PTR, 1998.

    [5] K. L. Fong and R. G. Meyer, “Monolithic RF Active Mixer Design,” IEEE J. Solid-State Circuits, vol. 46, pp. 231-229, Mar. 1999.

    [6] Simon Haykin, Communication Systems. John Wiley & Sons, Inc, 2001

    [7] Marc A. F. Borremans and Michiel S. J. Steyaert, “A 2-V, Low Distortion, 1-GHz CMOS Up-Conversion Mixer,” IEEE J. Solid-State Circuits, vol. 33, pp. 359-366, Mar. 1998.

    [8] T. –K. Nguyen and V.Krizhanovskii, “A Low-Power RF Direct-Conversion Receiver/Transmitter for 2.4-GHz-Band IEEE 802.15.4 Standard in 0.18-μm CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 54, pp. 4062-4071, Dec. 2006.

    [9] Barrie Gilbert, “The MICROMIXER: a highly linear variant of the Gilbert mixer using a bisymmetric Class-AB input stage,” IEEE J. Solid-State Circuits, vol. 32, pp. 1412-1423, Sep. 1997.

    [10] T. –K. Nguyen and Sang-Gug Lee, “A 900 MHz Low Voltage Low Power Variable Gain CMOS Transmitter Front-end,” 2005.

    [11] Barrie Gilbert, “A precise four-quadrant multiplier with subnanosecond response,” IEEE J. Solid-State Circuits, vol. SC-3, pp. 365-373, Dec. 1968.

    [12] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw Hill, 2000.

    [13] K. Lee, J. Park, and J-W Lee, “A Single-Chip 2.4-GHz Direct-Conversion CMOS Receiver for Wireless Local Loop using Multiphase Reduced Frequency Conversion technique,” IEEE J. Solid-State Circuits, vol. 36, pp. 800-809, May. 2001.

    [14] Liwei Sheng, J.C. Jensen, L.E. Larson, “A wide-bandwidth Si/SiGe HBT direct conversion sub-harmonic mixer/downconverter,” IEEE J. Solid-State Circuits, vol. 35, pp. 1329-1337, Sep. 2000.
    [15] M. Goldfarb, E. Balboni, J. Cavey, “Even harmonic double-balanced active mixer for use in direct conversion receivers,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1762-1766, Oct. 2003.

    [16] K-J Koh, M-Y Park, C-S Kim, and H-K Yu, “Subharmonically Pumped CMOS Frequency Conversion (Up and Down) Circuits for 2-GHz WCDMA Direct-Conversion Transceiver,” IEEE J. Solid-State Circuits, vol. 39, no. 6, pp. 871-884, Jun. 2004.

    [17] F. Behbahani, Y. Kishigami, J. Leete and A. A. Abidi, “CMOS mixers and polyphase filters for large image rejection,” IEEE J. Solid-State Circuits, vol. 36, pp. 873-887, Jun. 2001.

    [18] T. Yamaji, H. Tanimoto and H. Kokatsu, “An I/Q active balanced harmonic mixer with IM2 cancelers and a 45° phase shifter,” IEEE J. Solid-State Circuits, vol. 33, pp. 2240-2246, Dec. 1998.

    [19] Behzad Razavi, Design of Integrated Circuits for Optical Communications. McGraw Hill, 2003.

    [20] F. Behbahani, A. Fotowat and S. Navid, “A low distortion bipolar mixer for low voltage direct up-conversion and high IF systems,” IEEE J. Solid-State Circuits, vol. 32, No.9, pp. 1446-1450, Sep. 1997.

    [21] Willy Sansen, “Distortion in Elementary Transistor Circuits,” IEEE Trans. Circuits Syst. II, vol.46, No.3, pp. 315-325, Mar. 1999.

    [22] I. Vassiliou, K. Vavelidis and T. Georgantas, “A single-chip digitally calibrated 5.15-5.825-GHz 0.18-μm CMOS transceiver for 802.11a wireless LAN,” IEEE J. Solid-State Circuits, vol. 38, No.12, pp. 2221-2231, Dec. 2003.

    [23] R. Ahola, A. Aktas and J. Wilson, “A single-chip CMOS transceiver for 802.11a/b/g wireless LANs,” IEEE J. Solid-State Circuits, vol. 39, No.12, pp. 2250-2258, Dec. 2004.

    [24] R. G. Meyer, “Low-power monolithic RF peak detector analysis,” IEEE J. Solid-State Circuits, vol. 30, pp. 65-67, Jan. 1995.

    [25] E.A. Crain and M.H. Perrott, “A 3.125 Gb/s limit amplifier in CMOS with 42 dB gain and 1 μs offset compensation,” IEEE J. Solid-State Circuits, vol. 41, pp. 443-451, Feb. 2006.

    [26] B. Razavi and B.A. Wooley, “Design techniques for high-speed, high-resolution comparators,” IEEE J. Solid-State Circuits, vol. 27, pp. 1916-1926, Dec. 1992.

    [27] Hsiao-Chin Chen, Tao Wang, and Shey-Shi Liu, “A 5–6 GHz 1-V CMOS Direct-Conversion Receiver With an Integrated Quadrature Coupler,” IEEE J. Solid-State Circuits, vol. 42, pp. 1963-1975, Sep. 2007.

    [28] Juo-Jung Hung, Timothy M. Hancock, and Gabriel M. Rebeiz, “A 77 GHz SiGe Sub-Harmonic Balanced Mixer,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2167-2173, Nov. 2005.

    [29] Manolis T. Terrovitis, and Robert G. Meyer, “Intermodulation Distortion in Current-Commutating CMOS Mixers,” IEEE J. Solid-State Circuits, vol. 35, no. 10, pp. 1461-1473, Oct. 2000.

    [30] Henrik Sjöland, Ali Karimi-Sanjaani, and Asad A. Abidi, “A Merged CMOS LNA and Mixer for a WCDMA Receiver,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1045-1050, Jun. 2003.

    [31] Mingquan Bao, Harald Jacobsson, Lars Aspemyr, Geert Carchon, and Xiao Sun, “A 9–31-GHz Subharmonic Passive Mixer in 90-nm CMOS Technology,” IEEE J. Solid-State Circuits, vol. 41, no. 10, pp. 2257-2264, Oct. 2006.

    [32] Brad R. Jackson, and Carlos E. Saavedra, “A CMOS Ku-Band 4x Subharmonic Mixer,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1351-1359, Jun. 2008.

    [33] Kang-Yoon Lee, Seung-Wook Lee, Yido Koo, Hyoung-Ki Huh, Hee-Young Nam, Jeong-Woo Lee, Joonbae Park, Kyeongho Lee, Deog-Kyoon Jeong, and Wonchan Kim, “Full-CMOS 2-GHz WCDMA Direct Conversion Transmitter and Receiver,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 43-53, Jan. 2003.

    [34] Tzung-Han Wu, Sheng-Che Tseng, Chin-Chun Meng, and Guo-Wei Huang, “GaInP/GaAs HBT Sub-Harmonic Gilbert Mixers Using Stacked-LO and Leveled-LO Topologies,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 55, no. 5, pp. 880-889, May. 2007.

    [35] Behzad Razavi, “CMOS Technology Characterization for Analog and RF Design,” IEEE J. Solid-State Circuits, vol. 34, no. 3, pp. 268-276, Mar. 1999.

    [36] Mostafa A. I. Elmala and Sherif H. K. Embabi, “Calibration of Phase and Gain Mismatches in Weaver Image-Reject Receiver,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 283-289, Feb. 2004.

    [37] Kalle Kivekäs, Aarno Pärssinen, Jussi Ryynänen, Jarkko Jussila and Kari Halonen, “Calibration Techniques of Active BiCMOS Mixers,” IEEE J. Solid-State Circuits, vol. 37, no. 6, pp. 766-769, Jun. 2002.

    [38] Yong-Hsiang Hsieh, Wei-Yi Hu, Shin-Ming Lin, Chao-Liang Chen, Wen-Kai Li, Sao-Jie Chen and David J. Chen, “An Auto-I/Q Calibrated CMOS Transceiver for 802.11g,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2187-2192, Nov. 2005.

    [39] K. Vavelidis et al., “A dual-band 5.15–5.35 GHz, 2.4–2.5 GHz 0.18 um CMOS transceiver for 802.11a/b/g wireless LAN,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1180–1184, Jul. 2004.

    [40] M. Zannoth et al., “A highly integrated dual-band multimode wireless LAN transceiver,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1191–1195, Jul. 2004.

    [41] Gabriel Brenna, David Tschopp, Juergen Rogin, Ilian Kouchev and Qiuting Huang, “A 2-GHz Carrier Leakage Calibrated Direct-Conversion WCDMA Transmitter in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1253-1262, Aug. 2004.

    [42] Lawrence Der and Behzad Razavi, “A 2-GHz CMOS Image-Reject Receiver With LMS Calibration,” IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 167-175, Feb. 2003.

    [43] Thomas Hornak, Knud L. Knudsen, Andrew Z. Grzegorek, Ken A. Nishimura and William J. McFarland, “An Image-Rejecting Mixer and Vector Filter with 55-dB Image Rejection over Process, Temperature, and Transistor Mismatch,” IEEE J. Solid-State Circuits, vol. 36, no. 1, pp. 23-33, Jan. 2001.

    [44] Woonyun Kim, Sung-Gi Yang, Jinhyuck Yu, Heeseon Shin, Wooseung Choo, and Byeong-Ha Park, “A Direct Conversion Receiver With an IP2 Calibrator for CDMA/PCS/GPS/AMPS Applications, ” IEEE J. Solid-State Circuits, vol. 41, no. 7, pp. 1535-1541, Jul. 2006.

    [45] Stephen Y. Yue, Dennis K. Ma and John R. Long, “A 17.1–17.3-GHz Image-Reject Downconverter With Phase-Tunable LO Using 3 Subharmonic Injection Locking,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2321-2332, Dec. 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE