簡易檢索 / 詳目顯示

研究生: 張祐豪
Chang, Yu-Hao
論文名稱: 硒氧化鉍場效應電晶體金半接觸特性分析
Metal/Semiconductor Contact Analysis for Bi2O2Se Field-Effect Transistor
指導教授: 邱博文
Chiu, Po-Wen
口試委員: 李奎毅
Lee, Kuei-Yi
沈昌宏
Shen, Chang-Hong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 74
中文關鍵詞: 硒氧化鉍二維材料金半接觸接觸電阻半導體遷移率
外文關鍵詞: Bi2O2Se, 2D material, Metal/Semiconductor Contact, Contact resistance, Semiconductor, Mobility
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二維材料在近二十年來發展迅速,由於其表面沒有懸鍵,因此在理論上
    是能做出高電子遷移率的元件,加上維度的縮減更有利於進行垂直的堆疊,
    因此有機會取代矽成為下個世代的主流材料。而金半接觸的工程一直扮演
    著重要的角色,相比於傳統的矽半導體,二維材料難以進行重摻雜並且存
    在費米能階釘扎的問題,使 Schottky Mott rule 所推估的蕭特基能障無法適
    用,並導致元件效能受限。
    本論文以化學氣相沉積法所成長的硒氧化鉍 (Bi2O2Se) 作為研究題材,
    並利用氫氬混合電漿對金半接觸區域進行處理,我們預期能夠強化電極金
    屬與材料之間的耦合,並提高電子注入效率,進而降低元件的接觸電阻。
    金半接觸區經電漿處理後電晶體的最大電流達 285.53 µA/µm 與最大載子
    遷移率 µ 達 380 cm2/V·s,且接觸電阻 Rc 為 4.9 kΩ·µm。然而在比較的過
    程中發現了材料表面的晶向混亂,論文的第二部分則注重在材料品質的調
    整。


    Two-dimensional (2D) materials have developed rapidly in the past two
    decades. Since there are no dangling bonds on the surface, they can the-
    oretically make components with high electron mobility. In addition, the
    reduction of dimensions is more conducive to vertical stacking, so it has
    the opportunity to replace silicon becomes the mainstream material for the
    next generation. The metal/semiconductor contact engineering has always
    played an important role. Compared with traditional silicon semiconduc-
    tors, 2D materials are difficult to be heavily doped and have the problem of
    Fermi level pinning. Therefore, the Schottky barrier estimated by the Schot-
    tky Mott rule cannot be applied, and the device performance is limited.
    In the thesis, we first use chemical vapor deposition to grow Bi2O2Se
    on the Mica, and use the Hydrogen-argon mixed plasma to treat the contact
    area. We expect to strengthen the coupling between the electrode metal and
    the 2D material, and improve the efficiency of electron injection, thereby
    reducing the contact resistance of the device. After plasma treatment of the
    contact area, the maximum current of the transistor reaches 285.53 µA/µm,
    the mobility reaches 380 cm2/V·s, and the contact resistance is 4.9 kΩ·µm.
    However, in the process of comparison, it was found that the crystal orien-
    tation of the material surface is disordered, and the second part of the paper
    focuses on the adjustment of material quality.

    摘要...i Abstract...ii 致謝...iii 目錄...iv 第 1 章 序論…1 1.1 半導體發展史…1 1.2 矽製程的發展與限制…4 1.3 二維半導體材料的發展…6 1.4 論文架構…8 第 2 章 硒氧化鉍二維材料之介紹…9 2.1 硒氧化鉍之組成與晶格結構…9 2.2 硒氧化鉍之電子能帶…11 2.3 硒氧化鉍之傳輸特性…13 2.3.1 硒氧化鉍之自我摻雜效應 (Self-modulation doping effect)…13 2.3.2 硒氧化鉍之變溫傳輸情形…14 第 3 章 金屬與半導體材料之接面探討…16 3.1 傳統半導體之金半接觸…16 3.2 二維半導體之金半接觸…19 3.3 接觸電阻之分析方法…23 3.3.1 傳輸線模型分析…23 3.3.2 變溫量測蕭特基能障…27 第 4 章 元件製程與材料分析…29 4.1 硒氧化鉍元件之製程步驟…29 4.2 硒氧化鉍材料成長與檢測方式…29 4.2.1 CVD 系統與流程…29 4.2.2 拉曼光譜儀檢測…35 4.3 硒氧化鉍材料轉印…38 4.4 黃光微影製程…41 4.5 電子槍蒸鍍金屬…42 4.6 鋁金屬自氧化…43 4.7 爐管退火… 44 第 5 章 實驗結果與分析…46 5.1 元件量測系統…46 5.2 元件量測結果與分析…47 5.2.1 硒氧化鉍場效應電晶體…47 5.2.2 電漿處理之金半特性分析…50 5.3 硒氧化鉍材料的調整…65 第 6 章 論文總結與未來展望…72 參考文獻…73

    [1] “2021 年台灣半導體產值,” 2022. https://ynews.page.link/vHi3.
    [2] W. F. Brinkman, D. E. Haggan, and W. W. Troutman, “A history of the invention of
    the transistor and where it will lead us,” IEEE journal of solid-state circuits, vol. 32,
    no. 12, pp. 1858–1865, 1997.
    [3] W. Shockley, “The path to the conception of the junction transistor,” IEEE Transac-
    tions on Electron Devices, vol. 23, no. 7, pp. 597–620, 1976.
    [4] Wikipedia contributors, “File:mosfet structure.png — wikimedia commons, the free
    media repository,” 2021. [Online; accessed 8-July-2022].
    [5] J. S. Kilby, “Invention of the integrated circuit,” IEEE Transactions on electron de-
    vices, vol. 23, no. 7, pp. 648–654, 1976.
    [6] S. Jurvetson, “122 years of moore’s law,” 2021. https://flic.kr/p/2mihXZU.
    [7] “Samsung electronics’proprietary mbcfet™ technology,” 2019. https://reurl.cc/
    Wr6R1e.
    [8] A. Kuc, “Low-dimensional transition-metal dichalcogenides,” 2014.
    [9] D. Presutti, T. Agarwal, A. Zarepour, N. Celikkin, S. Hooshmand, C. Nayak,
    M. Ghomi, A. Zarrabi, M. Costantini, B. Behera, et al., “Transition metal dichalco-
    genides (tmdc)-based nanozymes for biosensing and therapeutic applications,” Ma-
    terials, vol. 15, no. 1, p. 337, 2022.
    [10] Q. Wei, C. Lin, Y. Li, X. Zhang, Q. Zhang, Q. Shen, Y. Cheng, and W. Huang,
    “Physics of intrinsic point defects in bismuth oxychalcogenides: A first-principles
    investigation,” Journal of Applied Physics, vol. 124, no. 5, p. 055701, 2018.
    [11] Q. Wei, R. Li, C. Lin, A. Han, A. Nie, Y. Li, L.-J. Li, Y. Cheng, and W. Huang,
    “Quasi-two-dimensional se-terminated bismuth oxychalcogenide (bi2o2se),” ACS
    nano, vol. 13, no. 11, pp. 13439–13444, 2019.
    [12] F. Wang, S. Yang, J. Wu, X. Hu, Y. Li, H. Li, X. Liu, J. Luo, and T. Zhai, “Emerg-
    ing two-dimensional bismuth oxychalcogenides for electronics and optoelectronics,”
    InfoMat, vol. 3, no. 11, pp. 1251–1271, 2021.
    [13] Z. Zhu, X. Yao, S. Zhao, X. Lin, and W. Li, “Giant modulation of the electron mo-
    bility in semiconductor bi2o2se via incipient ferroelectric phase transition,” Journal
    of the American Chemical Society, vol. 144, no. 10, pp. 4541–4549, 2022.
    [14] M. Li, N. Wang, M. Jiang, H. Xiao, H. Zhang, Z. Liu, X. Zu, and L. Qiao, “Improved
    thermoelectric performance of bilayer bi 2 o 2 se by the band convergence approach,”
    Journal of Materials Chemistry C, vol. 7, no. 35, pp. 11029–11039, 2019.
    [15] H. Fu, J. Wu, H. Peng, and B. Yan, “Self-modulation doping effect in the high-
    mobility layered semiconductor bi 2 o 2 se,” Physical Review B, vol. 97, no. 24,
    p. 241203, 2018.
    [16] R. T. Tung, “Formation of an electric dipole at metal-semiconductor interfaces,”
    Physical review B, vol. 64, no. 20, p. 205310, 2001.
    [17] R. Islam, G. Shine, and K. C. Saraswat, “Schottky barrier height reduction for holes
    by fermi level depinning using metal/nickel oxide/silicon contacts,” Applied Physics
    Letters, vol. 105, no. 18, p. 182103, 2014.
    [18] L. Xu, S. Liu, J. Yang, B. Shi, Y. Pan, X. Zhang, H. Li, J. Yan, J. Li, L. Xu, et al., “Per-
    vasive ohmic contacts in bilayer bi2o2se–metal interfaces,” The Journal of Physical
    Chemistry C, vol. 123, no. 14, pp. 8923–8931, 2019.
    [19] S. Liu, L. Xu, Y. Pan, J. Yang, J. Li, X. Zhang, L. Xu, H. Pang, J. Yan, B. Shi,
    et al., “Unusual fermi-level pinning and ohmic contact at monolayer bi2o2se–metal
    interface,” Advanced Theory and Simulations, vol. 2, no. 5, p. 1800178, 2019.
    [20] C. Hong, Y. Tao, A. Nie, M. Zhang, N. Wang, R. Li, J. Huang, Y. Huang, X. Ren,
    Y. Cheng, et al., “Inclined ultrathin bi2o2se films: a building block for functional
    van der waals heterostructures,” ACS nano, vol. 14, no. 12, pp. 16803–16812, 2020.
    [21] Y.-D. Xu, C. Wang, Y.-Y. Lv, Y. Chen, S.-H. Yao, and J. Zhou, “Infrared and raman
    spectra of bi 2 o 2 x and bi 2 ox 2 (x= s, se, and te) studied from first principles
    calculations,” RSC advances, vol. 9, no. 31, pp. 18042–18049, 2019.
    [22] U. J. Kim, S. H. Nam, J. Seo, M. Yang, Q. Fu, Z. Liu, H. Son, M. Lee, and M. G.
    Hahm, “Visualizing line defects in non-van der waals bi2o2se using raman spec-
    troscopy,” ACS nano, vol. 16, no. 3, pp. 3637–3646, 2022.
    [23] A. L. Pereira, D. Santamaría-Pérez, J. Ruiz-Fuertes, F.-J. Manjón, V. P. Cuenca-
    Gotor, R. Vilaplana, O. Gomis, C. Popescu, A. Muñoz, P. Rodríguez-Hernández,
    et al., “Experimental and theoretical study of bi2o2se under compression,” The Jour-
    nal of Physical Chemistry C, vol. 122, no. 16, pp. 8853–8867, 2018.
    [24] H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A. Castro Neto, J. Martin,
    S. Adam, B. Özyilmaz, et al., “Transport properties of monolayer mos2 grown by
    chemical vapor deposition,” Nano letters, vol. 14, no. 4, pp. 1909–1913, 2014.

    QR CODE