研究生: |
黃柏榕 Huang, Po-Jung |
---|---|
論文名稱: |
高通量小RNA定序分析平台之建立及其應用 Establishment and Applications of Small RNA High-throughput Sequencing Analysis Platform |
指導教授: |
呂平江
Lyu, Ping-Chiang |
口試委員: |
呂平江
鄧致剛 林文昌 黃憲達 白敦文 |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 124 |
中文關鍵詞: | 高通量定序 、小核醣核酸 、單細胞生物 、鞭毛蟲 |
外文關鍵詞: | next-generation sequencing, microRNA, protist, flagellate |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
MicroRNAs (miRNAs) are a class of extensively studied small RNA population that plays a critical role in eukaryotic gene regulation. In this study, an automated multiple-task web service DSAP was designed to provide a total solution to analyzing deep-sequencing small RNA datasets generated by next-generation sequencing technology. The input data will go through four analysis steps in DSAP: (i) cleanup: removal of adaptors and poly-A/T/C/G/N nucleotides; (ii) clustering: grouping of cleaned sequence tags into unique sequence clusters; (iii) non-coding RNA (ncRNA) matching: sequence homology mapping against a transcribed sequence library from the ncRNA database Rfam (http://rfam.sanger.ac.uk/); and (iv) known miRNA matching: detection of known miRNAs in miRBase (http://www.mirbase.org/) based on sequence homology. The expression levels corresponding to matched ncRNAs and miRNAs are summarized in multi-color clickable bar charts linked to external databases. DSAP is also capable of displaying miRNA expression levels from different jobs using a log2-scaled color matrix. Furthermore, a cross-species comparative function is also provided to show the distribution of identified miRNAs in different species as deposited in miRBase.
In order to validate the functions of DSAP, we used deep-sequencing technology to investigate the miRNA expression pattern in four deep-branching unicellular flagellates: Giardia lamblia, Trichomonas vaginalis, Tritrichomonas foetus, and Pentatrichomonas hominis. In addition to the known miRNAs that have been described in G. lamblia and T. vaginalis, we identified 14 ancient animal miRNA families and 13 plant-specific families from the four unicellular flagellates. Bioinformatics analysis also identified four novel miRNA candidates with reliable precursor structures derived from mature tRNAs. Our results indicated that miRNAs are likely to be a general feature for gene regulation throughout unicellular and multicellular eukaryotes and some of them may derive from unconventional ncRNAs such as snoRNA and tRNA.
微小RNA (microRNA)是一群具有重要基因調控功能且在多細胞真核生物已被廣泛研究的干擾性核醣核酸 (RNAi)。我們為高通量小RNA定序設計了一套多功能線上分析系統,命名為DSAP (Deep-sequencing Small RNA Analysis Pipeline)。DSAP提供了一個友善的使用者操作界面,使用者僅需將定序產生的 RNA 序列與其對應的表現量上傳到伺服器,並選定欲分析的生物物種或使用預設參數,即可進行全自動分析。其分析項目包含:
1. 連接子與低品質序列去除
2. 合併重覆序列
3. 非轉譯 RNA 資料庫 (Rfam) 比對
4. miRBase 資料庫比對。此外,DSAP 還能以顏色矩陣的方式,同時呈現多筆實驗資料間標準化後的 microRNA 差異表現。分析的過程與結果可透過即時互動式圖表來檢視或下載,已完成分析的樣本也可透過伺服器所提供的序號加以追溯。
為了能讓使用者比較來自不同實驗平台 (Solexa、SOLiD、microarray…) 的資料,DSAP 還特地把 microRNA 差異表現的分析模組獨立出來,使用者僅需用剪貼的方式,即可將不同實驗平台的數據輸入 DSAP。最後,DSAP 還有一個最特別的功能,就是能依親緣關係顯示微小RNA 在不同物種間的分佈狀況。
為了進一步驗證DSAP的各種功能,我們選用了四種在演化上具有特殊地位(位於演化樹底層)的單細胞真核生物: 賈第亞蟲(Giardia lamblia)、人類陰道滴蟲(Trichomonas vaginalis)、牛陰道滴蟲(Tritrichomonas foetus) 、腸道道鞭毛蟲(Pentatrichomonas hominis),並結合高通量定序方法來偵測微小RNA在四種單細胞鞭毛蟲中表現的差異。,我們從高通量定序資料中,除了還原三種在賈第亞蟲和人類陰道滴蟲中已驗證的微小RNA外,我們還找到了14種存在於古老多細胞動物和13種植物特有的微小RNA家族。配合生物資訊預測方法,我們額外發現了四條源自於 tRNA 序列片斷的微小RNA,並利用實驗方法加以驗證。
總之,我們的研究結果指出,微小RNA調控機制確實存在於單細胞生物。然而,它並非全部從典型的微小RNA生成機制而來,它也能從其它非典型的生成機制經由裁切snoRNA或tRNA而生成。
1. Murchison, E. P., and Hannon, G. J. (2004) miRNAs on the move: miRNA biogenesis and the RNAi machinery, Curr Opin Cell Biol 16, 223-229.
2. Qavi, A. J., Kindt, J. T., and Bailey, R. C. (2010) Sizing up the future of microRNA analysis, Anal Bioanal Chem 398, 2535-2549.
3. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001) Identification of novel genes coding for small expressed RNAs, Science 294, 853-858.
4. Sempere, L. F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E., and Ambros, V. (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation, Genome biology 5, R13.
5. Cummins, J. M., He, Y., Leary, R. J., Pagliarini, R., Diaz, L. A., Jr., Sjoblom, T., Barad, O., Bentwich, Z., Szafranska, A. E., Labourier, E., Raymond, C. K., Roberts, B. S., Juhl, H., Kinzler, K. W., Vogelstein, B., and Velculescu, V. E. (2006) The colorectal microRNAome, Proceedings of the National Academy of Sciences of the United States of America 103, 3687-3692.
6. Castoldi, M., Schmidt, S., Benes, V., Noerholm, M., Kulozik, A. E., Hentze, M. W., and Muckenthaler, M. U. (2006) A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA), RNA 12, 913-920.
7. Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., Nguyen, J. T., Barbisin, M., Xu, N. L., Mahuvakar, V. R., Andersen, M. R., Lao, K. Q., Livak, K. J., and Guegler, K. J. (2005) Real-time quantification of microRNAs by stem-loop RT-PCR, Nucleic Acids Res 33, e179.
8. Lu, C., Meyers, B. C., and Green, P. J. (2007) Construction of small RNA cDNA libraries for deep sequencing, Methods 43, 110-117.
9. Metzker, M. L. (2010) Sequencing technologies - the next generation, Nature reviews. Genetics 11, 31-46.
10. Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B., and Cohen, S. M. (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila, Cell 113, 25-36.
11. Carrington, J. C., and Ambros, V. (2003) Role of microRNAs in plant and animal development, Science 301, 336-338.
12. Chen, C. Z., Li, L., Lodish, H. F., and Bartel, D. P. (2004) MicroRNAs modulate hematopoietic lineage differentiation, Science 303, 83-86.
13. Cheng, A. M., Byrom, M. W., Shelton, J., and Ford, L. P. (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis, Nucleic Acids Res 33, 1290-1297.
14. Friedlander, M. R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., Knespel, S., and Rajewsky, N. (2008) Discovering microRNAs from deep sequencing data using miRDeep, Nature biotechnology 26, 407-415.
15. Moxon, S., Schwach, F., Dalmay, T., Maclean, D., Studholme, D. J., and Moulton, V. (2008) A toolkit for analysing large-scale plant small RNA datasets, Bioinformatics 24, 2252-2253.
16. Wang, W. C., Lin, F. M., Chang, W. C., Lin, K. Y., Huang, H. D., and Lin, N. S. (2009) miRExpress: analyzing high-throughput sequencing data for profiling microRNA expression, BMC Bioinformatics 10, 328.
17. Pantano, L., Estivill, X., and Marti, E. (2010) SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells, Nucleic Acids Res 38, e34.
18. Mathelier, A., and Carbone, A. (2010) MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data, Bioinformatics 26, 2226-2234.
19. Hackenberg, M., Rodriguez-Ezpeleta, N., and Aransay, A. M. (2011) miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments, Nucleic Acids Res.
20. Hackenberg, M., Sturm, M., Langenberger, D., Falcon-Perez, J. M., and Aransay, A. M. (2009) miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments, Nucleic Acids Res 37, W68-76.
21. Zhu, E., Zhao, F., Xu, G., Hou, H., Zhou, L., Li, X., Sun, Z., and Wu, J. (2010) mirTools: microRNA profiling and discovery based on high-throughput sequencing, Nucleic Acids Res 38, W392-397.
22. Gardner, P. P., Daub, J., Tate, J. G., Nawrocki, E. P., Kolbe, D. L., Lindgreen, S., Wilkinson, A. C., Finn, R. D., Griffiths-Jones, S., Eddy, S. R., and Bateman, A. (2009) Rfam: updates to the RNA families database, Nucleic Acids Res 37, D136-140.
23. Griffiths-Jones, S. (2005) Annotating non-coding RNAs with Rfam, Curr Protoc Bioinformatics Chapter 12, Unit 12 15.
24. Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A., and Eddy, S. R. (2003) Rfam: an RNA family database, Nucleic Acids Res 31, 439-441.
25. Griffiths-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S. R., and Bateman, A. (2005) Rfam: annotating non-coding RNAs in complete genomes, Nucleic Acids Res 33, D121-124.
26. Kozomara, A., and Griffiths-Jones, S. (2011) miRBase: integrating microRNA annotation and deep-sequencing data, Nucleic Acids Res 39, D152-157.
27. Griffiths-Jones, S. (2010) miRBase: microRNA sequences and annotation, Current protocols in bioinformatics / editoral board, Andreas D. Baxevanis ... [et al.] Chapter 12, Unit 12 19 11-10.
28. Griffiths-Jones, S., Saini, H. K., van Dongen, S., and Enright, A. J. (2008) miRBase: tools for microRNA genomics, Nucleic Acids Res 36, D154-158.
29. Griffiths-Jones, S. (2006) miRBase: the microRNA sequence database, Methods Mol Biol 342, 129-138.
30. Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A., and Enright, A. J. (2006) miRBase: microRNA sequences, targets and gene nomenclature, Nucleic Acids Res 34, D140-144.
31. Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., Horvitz, H. R., and Ruvkun, G. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans, Nature 403, 901-906.
32. Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell 75, 843-854.
33. Aravin, A. A., Lagos-Quintana, M., Yalcin, A., Zavolan, M., Marks, D., Snyder, B., Gaasterland, T., Meyer, J., and Tuschl, T. (2003) The small RNA profile during Drosophila melanogaster development, Dev Cell 5, 337-350.
34. Zhang, B., Wang, Q., and Pan, X. (2007) MicroRNAs and their regulatory roles in animals and plants, J Cell Physiol 210, 279-289.
35. Saraiya, A. A., and Wang, C. C. (2008) snoRNA, a novel precursor of microRNA in Giardia lamblia, PLoS Pathog 4, e1000224.
36. Lin, W. C., Huang, K. Y., Chen, S. C., Huang, T. Y., Chen, S. J., Huang, P. J., and Tang, P. (2009) Malate dehydrogenase is negatively regulated by miR-1 in Trichomonas vaginalis, Parasitol Res 105, 1683-1689.
37. Lin, W. C., Li, S. C., Shin, J. W., Hu, S. N., Yu, X. M., Huang, T. Y., Chen, S. C., Chen, H. C., Chen, S. J., Huang, P. J., Gan, R. R., Chiu, C. H., and Tang, P. (2009) Identification of microRNA in the protist Trichomonas vaginalis, Genomics 93, 487-493.
38. Zhang, Y. Q., Chen, D. L., Tian, H. F., Zhang, B. H., and Wen, J. F. (2009) Genome-wide computational identification of microRNAs and their targets in the deep-branching eukaryote Giardia lamblia, Comput Biol Chem 33, 391-396.
39. Mallick, B., Ghosh, Z., and Chakrabarti, J. (2008) MicroRNA switches in Trypanosoma brucei, Biochem Biophys Res Commun 372, 459-463.
40. De, S., Pal, D., and Ghosh, S. K. (2006) Entamoeba histolytica: computational identification of putative microRNA candidates, Exp Parasitol 113, 239-243.
41. Chen, X. S., Collins, L. J., Biggs, P. J., and Penny, D. (2009) High throughput genome-wide survey of small RNAs from the parasitic protists Giardia intestinalis and Trichomonas vaginalis, Genome Biol Evol 1, 165-175.
42. Kim, Y. A., Kim, H. Y., Cho, S. H., Cheun, H. I., Yu, J. R., and Lee, S. E. (2010) PCR detection and molecular characterization of Pentatrichomonas hominis from feces of dogs with diarrhea in the Republic of Korea, Korean J Parasitol 48, 9-13.
43. Culberson, D. E., Pindak, F. F., Gardner, W. A., and Honigberg, B. M. (1986) Tritrichomonas mobilensis n. sp. (Zoomastigophorea: Trichomonadida) from the Bolivian squirrel monkey Saimiri boliviensis boliviensis, J Protozool 33, 301-304.
44. Kondova, I., Simon, M. A., Klumpp, S. A., MacKey, J., Widmer, G., Domingues, H. G., Persengiev, S. P., and O'Neil, S. P. (2005) Trichomonad gastritis in rhesus macaques (Macaca mulatta) infected with simian immunodeficiency virus, Vet Pathol 42, 19-29.
45. Manning, K. (2010) Update on the diagnosis and management of Tritrichomonas foetus infections in cats, Top Companion Anim Med 25, 145-148.
46. Lyons, E. J., and Carlton, J. M. (2004) Mind the gap: bridging the divide between clinical and molecular studies of the trichomonads, Trends Parasitol 20, 204-207.
47. Van Der Pol, B., Kwok, C., Pierre-Louis, B., Rinaldi, A., Salata, R. A., Chen, P. L., van de Wijgert, J., Mmiro, F., Mugerwa, R., Chipato, T., and Morrison, C. S. (2008) Trichomonas vaginalis infection and human immunodeficiency virus acquisition in African women, J Infect Dis 197, 548-554.
48. Kissinger, P., Amedee, A., Clark, R. A., Dumestre, J., Theall, K. P., Myers, L., Hagensee, M. E., Farley, T. A., and Martin, D. H. (2009) Trichomonas vaginalis treatment reduces vaginal HIV-1 shedding, Sex Transm Dis 36, 11-16.
49. He, L., and Hannon, G. J. (2004) MicroRNAs: small RNAs with a big role in gene regulation, Nature reviews. Genetics 5, 522-531.
50. Cock, P. J., Fields, C. J., Goto, N., Heuer, M. L., and Rice, P. M. (2010) The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants, Nucleic acids research 38, 1767-1771.
51. Bennett, S. (2004) Solexa Ltd, Pharmacogenomics 5, 433-438.
52. Li, H., Ruan, J., and Durbin, R. (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores, Genome Res 18, 1851-1858.
53. Zerbino, D. R., and Birney, E. (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs, Genome Res 18, 821-829.
54. Li, H., and Durbin, R. (2009) Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics 25, 1754-1760.
55. Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome biology 10, R25.
56. Leinonen, R., Sugawara, H., and Shumway, M. (2011) The sequence read archive, Nucleic Acids Res 39, D19-21.
57. Cock, P. J., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B., and de Hoon, M. J. (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics, Bioinformatics 25, 1422-1423.
58. Stajich, J. E., Block, D., Boulez, K., Brenner, S. E., Chervitz, S. A., Dagdigian, C., Fuellen, G., Gilbert, J. G., Korf, I., Lapp, H., Lehvaslaiho, H., Matsalla, C., Mungall, C. J., Osborne, B. I., Pocock, M. R., Schattner, P., Senger, M., Stein, L. D., Stupka, E., Wilkinson, M. D., and Birney, E. (2002) The Bioperl toolkit: Perl modules for the life sciences, Genome Res 12, 1611-1618.
59. Holland, R. C., Down, T. A., Pocock, M., Prlic, A., Huen, D., James, K., Foisy, S., Drager, A., Yates, A., Heuer, M., and Schreiber, M. J. (2008) BioJava: an open-source framework for bioinformatics, Bioinformatics 24, 2096-2097.
60. Rice, P., Longden, I., and Bleasby, A. (2000) EMBOSS: the European Molecular Biology Open Software Suite, Trends Genet 16, 276-277.
61. Taylor, J., Schenck, I., Blankenberg, D., and Nekrutenko, A. (2007) Using galaxy to perform large-scale interactive data analyses, Current protocols in bioinformatics / editoral board, Andreas D. Baxevanis ... [et al.] Chapter 10, Unit 10 15.
62. Morgulis, A., Coulouris, G., Raytselis, Y., Madden, T. L., Agarwala, R., and Schaffer, A. A. (2008) Database indexing for production MegaBLAST searches, Bioinformatics 24, 1757-1764.
63. Edgar, R. C. (2010) Search and clustering orders of magnitude faster than BLAST, Bioinformatics 26, 2460-2461.
64. Li, W., and Godzik, A. (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences, Bioinformatics 22, 1658-1659.
65. Aurrecoechea, C., Brestelli, J., Brunk, B. P., Fischer, S., Gajria, B., Gao, X., Gingle, A., Grant, G., Harb, O. S., Heiges, M., Innamorato, F., Iodice, J., Kissinger, J. C., Kraemer, E. T., Li, W., Miller, J. A., Nayak, V., Pennington, C., Pinney, D. F., Roos, D. S., Ross, C., Srinivasamoorthy, G., Stoeckert, C. J., Jr., Thibodeau, R., Treatman, C., and Wang, H. (2010) EuPathDB: a portal to eukaryotic pathogen databases, Nucleic Acids Res 38, D415-419.
66. Pavlidis, P., and Noble, W. S. (2003) Matrix2png: a utility for visualizing matrix data, Bioinformatics 19, 295-296.
67. Audic, S., and Claverie, J. M. (1997) The significance of digital gene expression profiles, Genome Res 7, 986-995.
68. Xue, C., Li, F., He, T., Liu, G. P., Li, Y., and Zhang, X. (2005) Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine, BMC Bioinformatics 6, 310.
69. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Res 31, 3406-3415.
70. Denman, R. B. (1993) Using RNAFOLD to predict the activity of small catalytic RNAs, Biotechniques 15, 1090-1095.
71. Diamond, L. S., Clark, C. G., and Cunnick, C. C. (1995) YI-S, a casein-free medium for axenic cultivation of Entamoeba histolytica, related Entamoeba, Giardia intestinalis and Trichomonas vaginalis, J Eukaryot Microbiol 42, 277-278.
72. Keister, D. B. (1983) Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile, Trans R Soc Trop Med Hyg 77, 487-488.
73. Huang, P. J., Liu, Y. C., Lee, C. C., Lin, W. C., Gan, R. R., Lyu, P. C., and Tang, P. (2010) DSAP: deep-sequencing small RNA analysis pipeline, Nucleic Acids Res 38 Suppl, W385-391.
74. Li, R., Yu, C., Li, Y., Lam, T. W., Yiu, S. M., Kristiansen, K., and Wang, J. (2009) SOAP2: an improved ultrafast tool for short read alignment, Bioinformatics 25, 1966-1967.
75. Carlton, J. M., Hirt, R. P., Silva, J. C., Delcher, A. L., Schatz, M., Zhao, Q., Wortman, J. R., Bidwell, S. L., Alsmark, U. C., Besteiro, S., Sicheritz-Ponten, T., Noel, C. J., Dacks, J. B., Foster, P. G., Simillion, C., Van de Peer, Y., Miranda-Saavedra, D., Barton, G. J., Westrop, G. D., Muller, S., Dessi, D., Fiori, P. L., Ren, Q., Paulsen, I., Zhang, H., Bastida-Corcuera, F. D., Simoes-Barbosa, A., Brown, M. T., Hayes, R. D., Mukherjee, M., Okumura, C. Y., Schneider, R., Smith, A. J., Vanacova, S., Villalvazo, M., Haas, B. J., Pertea, M., Feldblyum, T. V., Utterback, T. R., Shu, C. L., Osoegawa, K., de Jong, P. J., Hrdy, I., Horvathova, L., Zubacova, Z., Dolezal, P., Malik, S. B., Logsdon, J. M., Jr., Henze, K., Gupta, A., Wang, C. C., Dunne, R. L., Upcroft, J. A., Upcroft, P., White, O., Salzberg, S. L., Tang, P., Chiu, C. H., Lee, Y. S., Embley, T. M., Coombs, G. H., Mottram, J. C., Tachezy, J., Fraser-Liggett, C. M., and Johnson, P. J. (2007) Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis, Science 315, 207-212.
76. Morrison, H. G., McArthur, A. G., Gillin, F. D., Aley, S. B., Adam, R. D., Olsen, G. J., Best, A. A., Cande, W. Z., Chen, F., Cipriano, M. J., Davids, B. J., Dawson, S. C., Elmendorf, H. G., Hehl, A. B., Holder, M. E., Huse, S. M., Kim, U. U., Lasek-Nesselquist, E., Manning, G., Nigam, A., Nixon, J. E., Palm, D., Passamaneck, N. E., Prabhu, A., Reich, C. I., Reiner, D. S., Samuelson, J., Svard, S. G., and Sogin, M. L. (2007) Genomic minimalism in the early diverging intestinal parasite Giardia lamblia, Science 317, 1921-1926.
77. Livak, K. J., and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods 25, 402-408.
78. Mullan, L. J., and Bleasby, A. J. (2002) Short EMBOSS User Guide. European Molecular Biology Open Software Suite, Brief Bioinform 3, 92-94.
79. Olson, S. A. (2002) EMBOSS opens up sequence analysis. European Molecular Biology Open Software Suite, Brief Bioinform 3, 87-91.
80. Rice, P., Longden, I., and Bleasby, A. (2000) EMBOSS: the European Molecular Biology Open Software Suite, Trends Genet 16, 276-277.
81. Smith, T. F., and Waterman, M. S. (1981) Identification of common molecular subsequences, J Mol Biol 147, 195-197.
82. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res 25, 3389-3402.
83. Glazov, E. A., Cottee, P. A., Barris, W. C., Moore, R. J., Dalrymple, B. P., and Tizard, M. L. (2008) A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach, Genome Res 18, 957-964.
84. Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2002) Multiple sequence alignment using ClustalW and ClustalX, Curr Protoc Bioinformatics Chapter 2, Unit 2 3.
85. Moretti, S., Wilm, A., Higgins, D. G., Xenarios, I., and Notredame, C. (2008) R-Coffee: a web server for accurately aligning noncoding RNA sequences, Nucleic Acids Res 36, W10-13.
86. Wilm, A., Higgins, D. G., and Notredame, C. (2008) R-Coffee: a method for multiple alignment of non-coding RNA, Nucleic Acids Res 36, e52.
87. Christodoulou, F., Raible, F., Tomer, R., Simakov, O., Trachana, K., Klaus, S., Snyman, H., Hannon, G. J., Bork, P., and Arendt, D. (2010) Ancient animal microRNAs and the evolution of tissue identity, Nature 463, 1084-1088.
88. Chen, X. S., Rozhdestvensky, T. S., Collins, L. J., Schmitz, J., and Penny, D. (2007) Combined experimental and computational approach to identify non-protein-coding RNAs in the deep-branching eukaryote Giardia intestinalis, Nucleic Acids Res 35, 4619-4628.
89. Chen, X. S., White, W. T., Collins, L. J., and Penny, D. (2008) Computational identification of four spliceosomal snRNAs from the deep-branching eukaryote Giardia intestinalis, PLoS One 3, e3106.
90. Simoes-Barbosa, A., Meloni, D., Wohlschlegel, J. A., Konarska, M. M., and Johnson, P. J. (2008) Spliceosomal snRNAs in the unicellular eukaryote Trichomonas vaginalis are structurally conserved but lack a 5'-cap structure, RNA 14, 1617-1631.
91. Levine, M., and Tjian, R. (2003) Transcription regulation and animal diversity, Nature 424, 147-151.
92. Chen, K., and Rajewsky, N. (2007) The evolution of gene regulation by transcription factors and microRNAs, Nat Rev Genet 8, 93-103.
93. Lee, Y. S., Shibata, Y., Malhotra, A., and Dutta, A. (2009) A novel class of small RNAs: tRNA-derived RNA fragments (tRFs), Genes Dev 23, 2639-2649.
94. Persson, H., Kvist, A., Vallon-Christersson, J., Medstrand, P., Borg, A., and Rovira, C. (2009) The non-coding RNA of the multidrug resistance-linked vault particle encodes multiple regulatory small RNAs, Nat Cell Biol 11, 1268-1271.
95. Scott, M. S., Avolio, F., Ono, M., Lamond, A. I., and Barton, G. J. (2009) Human miRNA precursors with box H/ACA snoRNA features, PLoS Comput Biol 5, e1000507.
96. Taft, R. J., Glazov, E. A., Lassmann, T., Hayashizaki, Y., Carninci, P., and Mattick, J. S. (2009) Small RNAs derived from snoRNAs, RNA 15, 1233-1240.
97. Yeung, M. L., Bennasser, Y., Watashi, K., Le, S. Y., Houzet, L., and Jeang, K. T. (2009) Pyrosequencing of small non-coding RNAs in HIV-1 infected cells: evidence for the processing of a viral-cellular double-stranded RNA hybrid, Nucleic Acids Res 37, 6575-6586.
98. Pederson, T. (2010) Regulatory RNAs derived from transfer RNA?, RNA 16, 1865-1869.
99. Cole, C., Sobala, A., Lu, C., Thatcher, S. R., Bowman, A., Brown, J. W., Green, P. J., Barton, G. J., and Hutvagner, G. (2009) Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs, RNA 15, 2147-2160.
100. Haussecker, D., Huang, Y., Lau, A., Parameswaran, P., Fire, A. Z., and Kay, M. A. (2010) Human tRNA-derived small RNAs in the global regulation of RNA silencing, RNA 16, 673-695.
101. Morin, R. D., O'Connor, M. D., Griffith, M., Kuchenbauer, F., Delaney, A., Prabhu, A. L., Zhao, Y., McDonald, H., Zeng, T., Hirst, M., Eaves, C. J., and Marra, M. A. (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells, Genome Res 18, 610-621.