研究生: |
邱翊恩 QIU, YI-EN |
---|---|
論文名稱: |
高延展性導電複合結構的開發與巨量變形介電彈性體致動器的應用 Development of Highly Stretchable Conductive Composites for Large Deformation Dielectric Elastomer Actuators |
指導教授: |
蘇育全
Su, Yu-Chuan |
口試委員: |
陳宗麟
Chen, Tsung-Lin 陳紹文 Chen, Shao-Wen |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 介電彈性體致動器 、突跳不穩定性 、銀奈米線 、碳奈米管 、三維光固化成型 |
外文關鍵詞: | Dielectric Elastomer Actuator, Snap-Through Instability, Silver nanowires, Carbon nanotubes, Three-dimensional light curing molding |
相關次數: | 點閱:42 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究透過光固化三維列印技術及複合配方的調配,精準控制曝光位置和時間,製備出厚度為 0.56 mm,具備 682% 延展性的彈性體。接著,利用真空過濾法製備銀奈米線與碳奈米管混合電極,並轉印至雙軸預拉伸 183% 的彈性體兩面上,形成兼具導電性和延展性的複合結構。為測試其性能,將複合結構安裝於開口直徑為 1.2 cm 的腔體,透過空氣壓力使彈性體膨脹成軸對稱的氣球狀,並於彈性體兩面電極上施加電壓差,觸發彈性體的突跳不穩定性,產生巨量變形。首先測試電極性能,我們量測了致動器電容與體積之間的關係。結果顯示,即使吹氣壓力達到 6.9 kPa,氣球體積擴張至 5.25 cm³,彈性體面積應變 1033% 的情況下,致動器電容值仍能穩定上升。接著,施加 3.1 kPa 的氣壓,使氣球初始體積 0.397 cm³ 在 1 kV 電壓作用下達到 2.871 cm³,此時電場為 14.87 V/µm,面積應變為 733%。此外,本研究將此結構延伸至二維 2 x 2 陣列,腔體開口直徑設計為 0.4 cm,每個開口的中心距離為 0.6 cm。接著在真空過濾時使用遮罩將電極圖案化,並轉印至其中一面預拉伸的彈性體上,將其分為四個可獨立驅動的致動器。本實驗透過調整腔室體積,來獲得不同開關電壓的效果。當使用腔體體積 1.5 cm³ 時,施加 14 kPa 的氣壓,每個氣球初始體積為 0.02 cm³,施加 2.5 kV 的電壓後,體積增加至 0.07 cm³,面積應變為 506%。電壓關閉後則恢復初始狀態。而使用腔體體積 1.75 cm³ 時,施加 11.6 kPa 的氣壓,每個氣球初始體積為 0.01 cm³,施加 1.8~2 kV 的電壓後,體積增加至0.054 cm³,電壓關閉後體積為 0.04 cm³,仍維持一定膨脹程度,呈現雙穩態特性,面積應變為 286%。此可逆、可重複且穩定的致動特性,為軟機器人的應用提供了可能性。
This study employed photocurable 3D printing technology and composite material formulation to precisely control the exposure location and time, fabricating an elastomer with a thickness of 0.56 mm and an elongation of 682%. Subsequently, a mixed electrode of silver nanowires and carbon nanotubes was prepared via vacuum filtration and transferred onto both surfaces of the elastomer, which was biaxially pre-stretched by 183%, forming a composite structure with both conductivity and stretchability. To test its performance, the composite structure was mounted on a cavity with an opening diameter of 1.2 cm. Air pressure was used to inflate the elastomer into an axisymmetric balloon shape, and a voltage difference was applied across the electrodes on both sides of the elastomer to trigger the snap-through instability, generating a large deformation.
Initially, to assess the electrode performance, the relationship between the actuator capacitance and volume was measured. The results showed that even when the inflation pressure reached 6.9 kPa, the balloon volume expanded to 5.25 cm³, and the elastomer underwent an areal strain of 1033%, the actuator capacitance still increased steadily. Subsequently, an air pressure of 3.1 kPa was applied, causing the initial balloon volume of 0.397 cm³ to reach 2.871 cm³ under a voltage of 1 kV, with an electric field of 14.87 V/µm and an areal strain of 733%.
Furthermore, this study extended the structure to a 2 x 2 two-dimensional array with a cavity opening diameter of 0.4 cm and a center-to-center distance of 0.6 cm between each opening. A mask was used during the vacuum filtration process to pattern the electrodes, which were then transferred onto one side of the pre-stretched elastomer, dividing it into four independently actuated actuators. This experiment achieved different switching voltages by adjusting the chamber volume. When a chamber volume of 1.5 cm³ was used and an air pressure of 14 kPa was applied, the initial volume of each balloon was 0.02 cm³. After applying a voltage of 2.5 kV, the volume increased to 0.07 cm³, with an areal strain of 506%. The initial state was restored after the voltage was turned off. When a chamber volume of 1.75 cm³ was used and an air pressure of 11.6 kPa was applied, the initial volume of each balloon was 0.01 cm³. After applying a voltage of 1.8~2 kV, the volume increased to 0.054 cm³. When the voltage was turned off, the volume remained at 0.04 cm³, maintaining a certain degree of inflation and exhibiting bistable characteristics, with an areal strain of 286%. This reversible, repeatable, and stable actuation characteristic offers potential for applications in soft robotics.
1. Gu, G.-Y., et al., A survey on dielectric elastomer actuators for soft robots. Bioinspiration & Biomimetics, 2017. 12(1): p. 011003.
2. Guo, Y., et al., Review of Dielectric Elastomer Actuators and Their Applications in Soft Robots. Advanced Intelligent Systems, 2021. 3(10): p. 2000282.
3. Kofod, G., et al., Energy minimization for self-organized structure formation and actuation. Applied Physics Letters, 2007. 90(8).
4. McGowan, A.-M.R., Smart Structures and Materials 2001: Industrial and Commercial Applications of Smart Structures Technologies. Smart Structures and Materials 2001: Industrial and Commercial Applications of Smart Structures Technologies, 2001. 4332.
5. Bar-Cohen, Y., Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD). Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD), 2004. 5385.
6. Lee, H.S., et al., Design analysis and fabrication of arrayed tactile display based on dielectric elastomer actuator. Sensors and Actuators A: Physical, 2014. 205: p. 191-198.
7. Youn, J.-H., et al., Dielectric Elastomer Actuator for Soft Robotics Applications and Challenges. Applied Sciences, 2020. 10(2): p. 640.
8. Romasanta, L.J., M.A. Lopez-Manchado, and R. Verdejo, Increasing the performance of dielectric elastomer actuators: A review from the materials perspective. Progress in Polymer Science, 2015. 51: p. 188-211.
9. Godaba, H., et al., Giant voltage-induced deformation of a dielectric elastomer under a constant pressure. Applied Physics Letters, 2014. 105(11).
10. Keplinger, C., et al., Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation. Soft Matter, 2012. 8(2): p. 285-288.
11. Gu, G., et al., A survey on dielectric elastomer actuators for soft robots. Bioinspiration & Biomimetics, 2017. 12.
12. Yao, S. and Y. Zhu, Nanomaterial-Enabled Stretchable Conductors: Strategies, Materials and Devices. Advanced Materials, 2015. 27(9): p. 1480-1511.
13. Zhang, L., et al., Recent progress for silver nanowires conducting film for flexible electronics. Journal of Nanostructure in Chemistry, 2021. 11(3): p. 323-341.
14. De Volder, M.F.L., et al., Carbon Nanotubes: Present and Future Commercial Applications. Science, 2013. 339(6119): p. 535-539.
15. Lee, P., et al., Highly Stretchable or Transparent Conductor Fabrication by a Hierarchical Multiscale Hybrid Nanocomposite. Advanced Functional Materials, 2014. 24(36): p. 5671-5678.
16. Funabe, M., et al., A solvent-compatible filter-transfer method of semi-transparent carbon-nanotube electrodes stacked with silver nanowires. Science and Technology of Advanced Materials, 2022. 23(1): p. 783-795.
17. Lee, Y.R., et al., Highly flexible and transparent dielectric elastomer actuators using silver nanowire and carbon nanotube hybrid electrodes. Soft Matter, 2017. 13(37): p. 6390-6395.
18. Wang, Y., L. Zhang, and D. Wang, Ultrastretchable Hybrid Electrodes of Silver Nanowires and Multiwalled Carbon Nanotubes Realized by Capillary-Force-Induced Welding. Advanced Materials Technologies, 2019. 4(11): p. 1900721.
19. Pal, A., et al., Exploiting Mechanical Instabilities in Soft Robotics: Control, Sensing, and Actuation. Advanced Materials, 2021. 33(19): p. 2006939.
20. Ingo Müller, P.S., Rubber and Rubber Balloons Paradigms of Thermodynamics. Springer Science and Business Media LLC, 2004.
21. Li, T., et al., Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability. Journal of the Mechanics and Physics of Solids, 2013. 61(2): p. 611-628.
22. Jang, Y., et al., Analysis of the multi-balloon dielectric elastomer actuator for traveling wave motion. Sensors and Actuators A: Physical, 2022. 333: p. 113243.
23. Sun, W., H. Wang, and J. Zhou, Actuation and instability of interconnected dielectric elastomer balloons. Applied Physics A, 2015. 119(2): p. 443-449.
24. Hines, L., K. Petersen, and M. Sitti, Inflated Soft Actuators with Reversible Stable Deformations. Advanced Materials, 2016. 28(19): p. 3690-3696.
25. Yin, L.-J., et al., Soft, tough, and fast polyacrylate dielectric elastomer for non-magnetic motor. Nature Communications, 2021. 12(1): p. 4517.
26. Baumgartner, R., et al., A Lesson from Plants: High-Speed Soft Robotic Actuators. Advanced Science, 2020. 7(5): p. 1903391.
27. Wang, Y., et al., Dielectric elastomer actuators for artificial muscles: A comprehensive review of soft robot explorations. Resources Chemicals and Materials, 2022. 1(3): p. 308-324.
28. https://vocus.cc/article/64911bb8fd89780001414b2f