簡易檢索 / 詳目顯示

研究生: 吳柏醇
Wu, Po-Chun
論文名稱: An Evaluation of Maximum Flow Algorithms in Distributed-Parallel Environment
分散式平行環境中的最大流演算法評比
指導教授: 韓永楷
口試委員: 韓永楷
李哲榮
姚兆明
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 26
中文關鍵詞: 最大流分散式環境
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 最大流問題是現今網路流理論中最根本的問題之一,近年來已有許多單一程序執行的最大流演算法被發表出來。然而,隨著分散式環境的日漸普及,分散式系統開始蓬勃發展。在這篇論文,我們將探討在一個同時有許多電腦平行運作的分散式環境中,如何快速地得到最大流。我們將實作並評比三個不同的最大流演算法,其中包括目前運算速度最快的Push Relabel演算法、在不同程序間的溝通行為上再進行優化的Push Relabel演算法、以及一個最近發表,專用於分散式環境上的最大流演算法。


    The maximum flow problem is one of the most basic problems in network
    flow theory. Many single-machine sequential algorithms are proposed over
    the years. However, distributed environments are much more common nowadays.
    In this thesis, our focus is to compute maximum flow on a distributed
    environment, where each distributed group may contain multiple computers
    running in parallel. We implement and evaluate three maximum-flow
    algorithms, including the Push-Relabel algorithm (the best sequential algorithm),
    a modified version of the Push-Relabel algorithm that is more
    communication-aware, and a recently proposed algorithm by Chen et al. [1]
    that is dedicated to run in a distributed environment.

    1 Introduction 2 2 Model Assumptions 5 2.1 Distributed-Parallel Model . . . . . . . . . . . . . . . . . . . . 5 2.2 Distributed Graph . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Algorithms Review 8 3.1 Ford-Fulkerson and Edmonds-Karp . . . . . . . . . . . . . . . 8 3.2 Push-Relabel . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3 Maximum Flow via Graph Summary . . . . . . . . . . . . . . 10 3.3.1 The Preprocessing Step . . . . . . . . . . . . . . . . . . 10 3.3.2 The Evaluation Step . . . . . . . . . . . . . . . . . . . 13 4 Experiment 16 4.1 Input Graph Generation . . . . . . . . . . . . . . . . . . . . . 17 4.2 Algorithms to be Compared . . . . . . . . . . . . . . . . . . . 18 4.2.1 Push-Relabel . . . . . . . . . . . . . . . . . . . . . . . 19 i 4.2.2 Modified Push-Relabel . . . . . . . . . . . . . . . . . . 19 4.2.3 Maximum Flow via Graph Summary . . . . . . . . . . 19 4.3 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3.1 Influence by Communication . . . . . . . . . . . . . . . 20 4.3.2 Influence by the Number of Nodes . . . . . . . . . . . . 21 4.3.3 Influence by the Number of Groups . . . . . . . . . . . 22 4.3.4 Influence by the Number of Connecting Vertices . . . . 23 5 Conclusion 25 ii

    [1] Y. M. Chen, P. C. Wu, and W. K. Hon. Maximum Flow via Graph
    Summaries. Manuscript in preparation, 2014.
    [2] T. H. Cormen, C. E. Leicerson, R. L. Rivest, and C. Stein. Introduction
    to Algorithms. MIT Press, 2009.
    [3] J. Edmonds and R. M. Karp. Theoretical Improvements in Algorithmic
    Efficiency for Network Flow Problems. Journal of the ACM, 19(2):248–
    264, 1972.
    [4] L. R. Ford and D. R. Fulkerson. Maximal Flow through a Network.
    Canadian Journal of Mathematics, 8(3):399–404, 1956.
    [5] A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum-
    Flow Problem. Journal of the ACM, 35(4):921–940, 1988.
    26

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE