研究生: |
吳柏醇 Wu, Po-Chun |
---|---|
論文名稱: |
An Evaluation of Maximum Flow Algorithms in Distributed-Parallel Environment 分散式平行環境中的最大流演算法評比 |
指導教授: | 韓永楷 |
口試委員: |
韓永楷
李哲榮 姚兆明 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 26 |
中文關鍵詞: | 最大流 、分散式環境 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
最大流問題是現今網路流理論中最根本的問題之一,近年來已有許多單一程序執行的最大流演算法被發表出來。然而,隨著分散式環境的日漸普及,分散式系統開始蓬勃發展。在這篇論文,我們將探討在一個同時有許多電腦平行運作的分散式環境中,如何快速地得到最大流。我們將實作並評比三個不同的最大流演算法,其中包括目前運算速度最快的Push Relabel演算法、在不同程序間的溝通行為上再進行優化的Push Relabel演算法、以及一個最近發表,專用於分散式環境上的最大流演算法。
The maximum flow problem is one of the most basic problems in network
flow theory. Many single-machine sequential algorithms are proposed over
the years. However, distributed environments are much more common nowadays.
In this thesis, our focus is to compute maximum flow on a distributed
environment, where each distributed group may contain multiple computers
running in parallel. We implement and evaluate three maximum-flow
algorithms, including the Push-Relabel algorithm (the best sequential algorithm),
a modified version of the Push-Relabel algorithm that is more
communication-aware, and a recently proposed algorithm by Chen et al. [1]
that is dedicated to run in a distributed environment.
[1] Y. M. Chen, P. C. Wu, and W. K. Hon. Maximum Flow via Graph
Summaries. Manuscript in preparation, 2014.
[2] T. H. Cormen, C. E. Leicerson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, 2009.
[3] J. Edmonds and R. M. Karp. Theoretical Improvements in Algorithmic
Efficiency for Network Flow Problems. Journal of the ACM, 19(2):248–
264, 1972.
[4] L. R. Ford and D. R. Fulkerson. Maximal Flow through a Network.
Canadian Journal of Mathematics, 8(3):399–404, 1956.
[5] A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum-
Flow Problem. Journal of the ACM, 35(4):921–940, 1988.
26