簡易檢索 / 詳目顯示

研究生: 柳瑀萱
論文名稱: 基於模糊比對概念之自動化使用性評估方法
The Automated Usability Testing Method Based on Fuzzy Matching Concept
指導教授: 王茂駿
口試委員: 郭建甫
林志隆
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 85
中文關鍵詞: 網路使用性網路探勘模型挖掘自動化使用性評估模糊理論
外文關鍵詞: Web Usability, Web Mining, Pattern Discovery, Automated Usability Testing/Evaluation, Fuzzy Set Theory
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於現今使用者消費習慣之改變,使用者已不僅為了滿足生活所需而購買
    產品或服務,在多樣化商品選擇中如何脫穎而出即成為一重要議題。因此使用者需求開始受到重視,有許多學者開始探討產品或服務之使用性(Usability)問題,希望透過改善其使用性提升使用者經驗(User Experience),故興起了使用者中心設計(User-Centered Design)的概念。而在這網際網路普及的時代,網路使用性開始受到高度重視,因而衍生出網路探勘(Web Mining)、網路使用者行為追蹤等方法來分析網路使用者的行為。儘管至今學者已提出許多使用性評估方法,但其大多數屬於人工進行之方法,近年來學者已開始著重於自動化使用性評估方法的發展,因自動化可帶來許多好處,如降低成本、增加評估之涵蓋範圍等優點。雖然自動化的使用性評估方法被學者們所推崇,但實際上被組織所使用的實例卻很少,多數與其方法之前置作業困難或需高技術支援相關。因此如何發展一套不需高成本與高技術支援之自動化使用性評估方法即成為一重要議題。
    本研究旨在發展一套自動化使用性評估方法,以既有的網路服務與軟體為基礎,開發一套自動化評估流程。在方法上,首先以自動化技術進行網路使用者行為記錄,並以模糊化(Fuzzy)的概念來定義網路使用者行為模型,透過網路探勘的技術進行序列模型挖掘(Sequential Pattern Discovery),最後透過序列校正(Sequence Alignment)之計算找出序列模型間之差異,以了解設計者與使用者間預期的落差。最後,透過一個案研究將此自動化使用性評估方法應用在所建構之購物網站中,以進行此方法之實際模擬與驗證,結果顯示透過此方法能夠使設計者更佳結構化的設計並改善網站,以達到提高網站使用性之目的。


    Due to the change of consumption habits of today's consumers, the purchase of products or service is not just to meet the needs of daily life. Thus, how to stand out in a diversified selection of products becomes an important issue. Many scholars explore the usability of products or services to enhance the user experience. Thus the concept of user-centered design arises. In this internet era, web usability has been taken seriously, and thus web mining, web user behavior tracking and other methods are developed to analyze the behavior of web users. To date, scholars have proposed many usability testing methods, but most are artificial methods. In recent years, scholars began to focus on automated usability testing method, because automation can bring in many benefits, such as reducing cost and increasing testing coverage, etc. Although scholars have highly valued the automated testing method, it is rarely used by the organizations due to it needs high technical support. Hence, how to develop an automated testing method without the high cost and high-level support becomes a crucial issue.
    This study aims to develop an automated usability testing method using existing services and software. First, this study uses automated techniques to record the web user behavior, and to define the user behavior pattern based on fuzzy concept. Then, we do the sequential pattern discovery by web mining technique, and calculate the differences between patterns. Finally, through the sequence alignment, we can find some information about the cognition gap between users and designers. Finally, we construct a shopping website to present a case study using this automated testing method. By conducting simulation and verification of this method, we conclude that this method can enable designers to better construct and improve their website to achieve the purpose of improving web usability.

    目錄 摘要 I Abstract II 誌謝 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 1 1.3 研究目的 2 1.4 研究流程 2 第二章 文獻探討 4 2.1 使用性工程 4 2.1.1 使用性(Usability)定義 4 2.1.2 使用性評估方法 5 2.1.3 網站使用性(Web Usability) 8 2.2 網路探勘(Web Mining) 10 2.2.1 網路探勘介紹 10 2.2.2 模型挖掘(Pattern Discovery)技術 11 2.2.3 Web Server Log與網路使用者行為追蹤 13 2.2.4 網路探勘之現況與相關研究 16 2.3文獻探討小結 21 第三章 研究方法 23 3.1 方法架構 23 3.1.1 自動化評估方法架構簡介 23 3.1.2 自動化記錄模組 24 3.1.3 序列模型挖掘模組 24 3.1.4 序列分析與資訊儲存模組 25 3.2 使用者行為模型定義 26 3.2.1 使用者行為模型之定義 26 3.2.2 模糊化函數定義方法與運算機制 27 3.2.3 模糊化動作序列產生方法 30 3.2.4 焦點小組進行方式 32 3.3 購物網站與自動化方法之系統設計 34 3.3.1 購物網站架構設計 34 3.3.2 自動化技術之程式開發 35 第四章 研究結果 42 4.1 自動化記錄模組 42 4.1.1 系統介紹 42 4.1.2 自動化記錄模組操作實例 42 4.2 序列模型挖掘模組 45 4.2.1 系統介紹 45 4.2.2 序列模型挖掘模組操作實例 45 4.3 序列分析與資訊儲存模組 46 4.3.1 系統介紹 46 4.3.2 序列分析與資訊儲存模組操作實例 46 第五章 個案研究-以購物網站為例 48 5.1 購物網站系統介紹 48 5.2 欲探究任務之預期動作序列(EAS)定義 51 5.2.1 預期動作序列定義 51 5.2.2 預期動作序列模糊化 55 5.3 使用者動作序列收集 59 5.3.1 實驗介紹 59 5.3.2 任務改善與否之臨界值設定 61 5.3.3 實驗結果分析與討論 61 5.4 自動化使用性評估方法之驗證 64 5.4.1 購物網站系統改善 64 5.4.2 改善後任務之預期動作序列(EAS)定義與模糊化 66 5.4.3 實驗介紹 68 5.4.4 實驗結果分析與驗證 68 第六章 綜合討論 71 第七章 結論與建議 76 7.1 結論 76 7.2 建議 77 參考文獻 79

    1. Click Tracks網站 http://www.clicktracks.com/products/pro/index.php
    2. Google Analytics 網站 http://www.google.com/intl/zh-TW/analytics/
    3. Excellent Analytics 網站 http://excellentanalytics.com/
    4. Joomla!TM 網站 http://www.joomla.org/
    5. Megaputer 網站http://www.megaputer.com/polyanalyst.php
    6. MySQLTM 網站 http://www.mysql.com/
    7. phpMyAdmin 網站 http://www.phpmyadmin.net/home_page/index.php
    8. SPSS 網站 http://www-01.ibm.com/software/analytics/spss/
    9. Virtuemart 網站 http://virtuemart.net/
    10. WorldWideWebsize.com 網站 http://www.worldwidewebsize.com
    11. 張智星 網站 http://mirlab.org/jang/books/javascript/regExp03.asp?title=10-3
    12. 陳揚棚,2008,以使用者需求為基礎結構化可用性評估方法:以使用互動電視選單導覽為例,清華大學工業工程與工程管理學系碩士論文。
    13. 詹榮昌,2000,全球資訊網網站人機介面可用性評估方法之研究,銘傳大學資訊管理學系碩士論文。
    14. 吳善彰,2008,中文維基百科網站之使用性評估研究,世新大學資訊傳播學系碩士論文。
    15. 詹念怡,2003,以網路使用者行為趨勢為基礎的模糊預測系統,淡江大學資訊工程學系碩士論文。
    16. 林志隆,2003,使用者記錄探勘及其在檢索詞URL與搜尋引擎推薦之應用,台灣大學資訊工程學系碩士論文。
    17. Agrawal, R. and Srikant, R. (1995). Mining sequential patterns. In Proceedings of 1995 International Conference on Data Engineering (ICDE’95), pp. 3-14, Taipei, Taiwan, March 1995.
    18. Arotaritei, D. and Mitra, S. (2004). Web mining: a survey in the fuzzy framework. Fuzzy Sets and Systems, 2004, 148, pp. 5-19.
    19. Atterer, R., Wnuk, M., and Schmidt, A. (2006). Knowing the user's every move: User Activity tracking for Web site usability evaluation and implicit interaction. In Proceedings of the 15th International Conference on the World Wide Web (WWW 2006), pp. 203–212, Edinburgh, Scotland.
    20. Barriocanal, G. E., Urb´an, M. A. S. and Gutiérrez, J.A. (2003). On the Vague Modelling of Web Page Characteristics Regarding Usability. Proceedings of the Atlantic Web Intelligence Conference (AWIC03), Springer Lecture Notes in Computer Science LNCS 2663, pp. 199-207.
    21. Bouras, C. and Konidaris, A. (2001). Web Components: A Concept for Improving Personalization and Reducing User Perceived Latency on the World Wide Web, In Proceedings of the 2nd International Conference on Internet Computing (IC2001), Las Vegas, Nevada, USA, June 2001, volume 2, pp. 238-244.
    22. Burton, M. C., and Walther, J. B. (2003). The Value of Web Log Data in Use-based Design and Testing. In Journal of Computer-Mediated Communication 6(3), April 2003.
    23. Castellano, G., and Torsello, M.A. (2009). How to Derive Fuzzy User Categories for Web Personalization. Web Personalization in Intelligent Environments, Studies in Computational Intelligence, 229/2009, Springer, pp. 65-79.
    24. Chang, B. C. H., and Halgamuge, S. K. (2003). Approximate Symbolic Pattern Matching for Protein Sequence Data. International Journal of Approximate Reasoning, volume 32, issue 2-3, Feb 2003.
    25. Chen, J., Shankar, S., Kelly, A., Gningue, S. and Rajaravivarma, R. (2009). A Two Stage Approach for Contiguous Sequential Pattern Mining. IEEE International Conference on Information Reuse and Integration, 2009.
    26. Chen, M. S., Jong, S. P. and Yu, P. S. (1998). Efficient Data Mining for Path Traversal Patterns. IEEE Transactions on Knowledge and Data Engineering, 1998, pp. 209-221.
    27. Chi, E. H., Pirolli, P. and Pitkow, J. (2000). The Scent of a Site: A System for Analyzing and Predicting Information Scent, Usage, and Usability of a Web Site. In Proceedings of Human Factors in Computing Systems, CHI 2000, pp. 400-407, Hague, Netherlands.
    28. Chordia, B. S. and Adhiya, K. P. (2011). Grouping Web Access Sequences Using Sequence Alignment Method. Indian Journal of Computer Science and Engineering (IJCSE), volume 02, No. 04, 2010, pp. 1233-1236.
    29. Cooley, R., Srivastava, J., and Mobasher, B. (1997). Web mining: Information and pattern discovery on the World Wide Web. In Proceedings of the 9th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), November 1997, 558-567.
    30. Dimopoulos, C., Makris, C., Panagis, Y., Theodoridis, E., and Tsakalidis, A. (2010). A web page usage prediction scheme using sequence indexing and clustering techniques. Data & Knowledge Engineering, volume 69, pp.371-382.
    31. Etzioni, O. (1996). The world wide web: Quagmire or gold mine, Communications of the ACM 39(11), 1996, pp. 65-68.
    32. Facca, F. M. and Lanzi, P. L. (2005). Mining interesting knowledge from weblogs: a survey. Data & Knowledge Engineering, volume 53(3), pp.225-241.
    33. Folmer, E. and Bosch, J. (2004). Architecting for usability: A survey. Journal of Systems and Software, volume 70, pp. 61-78.
    34. Gilleland, M. (2009). Levenshtein distance, in three flavors. Retrieved June 6, 2012, from http://www.merriampark.com/ld.htm.
    35. Gorawski, M., Jureczek,P. and Gorawski, M. (2010). Exploration of Continuous Sequential Patterns Using the CPGrowth Algorithm. Multimedia and Network Information System Technology, 2010, AISC 80, pp. 165–172.
    36. Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U. and Hsu, M-C. (2000). FreeSpan: Frequent Pattern-Projected Sequential Pattern Mining. In Proceedings of 2000 International Conference on Knowledge Discovery and Data Mining (KDD’00), pp. 355-359, Boston, MA, August 2000.
    37. Harty, J. (2011). Finding Usability Bugs with Automated Tests. Communications of the ACM, volume 54, February 2011.
    38. ISO/IEC 9241-11 (1998). Ergonomic requirements for office work with visual display terminals (VDT)s-Part II Guidance on Usability.
    39. Ivory, M. Y. and Hearst, M. A. (2001). The State of the Art in Automated Usability Evaluation of User Interfaces. ACM Computing Surveys, volume 33, number 4, pp. 470-516.
    40. Kosala, R. and Blockeel, H. (2000). Web mining research: A survey, ACM SIGKDD Explor.2, 2000, pp. 1-15.
    41. Koutri, M., Daskalaki, S., and Avouris, N. (2002). Adaptive Interaction with Web Site: an Overview of Methods and Techniques. Computer Science and Information Technologies CSIT.
    42. Larar, J. (2000). Web Usability: A User-centered Design Approach. New York: Pearson addison Wesley Press.
    43. Larar, J. (2001). User-centered Web Design. Harlow: Pearson Education Limited.
    44. Maguire, M. (2001). Context of use within usability activities, International Journal Human-Computer Studies 55, 2001, pp. 453-483.
    45. Makkar, P., Gulati, P., and Sharma, A. K. (2010). A Novel Approach for Predicting User Behavior for Improving Web Performance. International Journal on Computer Science and Engineering, volume 02, No. 04, 2010, pp. 1233-1236.
    46. Masseglia, F., Cathala, F. and Poncelet, P. (1998). The PSP Approach for Mining Sequential Patterns. In Proceedings of 1998 2nd European Symposium on Principles of Data Mining and Knowledge Discovery (PKDD'98), volume 1510, pp. 176-184, Nantes, France, LNAI, September 1998.
    47. Nielsen, J. (1993). Usability Engineering. Boston, Academic Press.
    48. Nielsen, J. (1999). Why People Shop on the Web. Retrieved June 6, 2012, from http://www.useit.com/alertbox/990207.html.
    49. Nielsen, J. (2000). Designing Web Usability. New Riders Publishing, Indianapolis.
    50. Nielsen, J. (2011). Top Ten Mistakes in Web Design. Retrieved June 6, 2012, from http://www.useit.com/alertbox/9605.html.
    51. Pearrow, M. (2000). Web site Usability Handbook. MA: Charles River Media.
    52. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U. and Hsu, M-C. (2001). PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. In Proceedings of 2001 International Conference on Data Engineering (ICDE’01), pp. 215-224, Heidelberg, Germany, April 2001.
    53. Saremi, Q. H. and Montazer, Gh. A. (2006). Web Usability: A Fuzzy approach to the navigation structure enhancement in a website system, case of Iranian Civil Aviation Organization Website. Transactions on Engineering, Computing and Technology, 2006, 16, pp. 123-128.
    54. Shackel, B. (1991). Human factors for informatics usability. New York: Cambridge University Press.
    55. Srivastava, J., Cooley, R., Deshpande, M., and Tan, P. N. (2000). Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data. In SIGKDD Explorations 1(2), 2000.
    56. Spiliopoulou, M. (2000). Web usage mining for Web site evaluation. Communications of the ACM, volume 43, issue 8, pp. 127-134.
    57. Wagner, R. A. and Fisher, M. J. (1974). The string to string correction problem. Journal of the ACM. 21(1), pp.168-173, January 1974.
    58. Wikipedia. (2012). Regular expression. Retrieved June 6, 2012, from http://en.wikipedia.org/wiki/Regular_expression.
    59. Wikipedia. (2012). Web mining. Retrieved June 6, 2012, from http://en.wikipedia.org/wiki/Web_mining.
    60. Xue, L., Chen, M., Xiong, Y. and Zhu, Y. (2010). User Navigation Behavior Mining using Multiple Data Domain Description. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, 2010.
    61. Yan, X., Han, J. and Afshar, R. (2003). CloSpan: Mining Closed Sequential Patterns in Large Datasets. SIAM International Conference on Data Mining, 2003, pp. 166–177.
    62. Yen, S. J. and Lee, Y. S. (2003). An Efficient Data Mining Algorithm for Discovering Web Access Patterns. In Proceedings of 5th Asia Pacific Web Conference (APWeb), Lecture Notes in Computer Science (LNCS) 2642, 2003, pp. 87-192.
    63. Zaki, M. J. (2003). Mining data in bioinformatics. In Nong Ye (Ed.) Handbook of Data Mining, Lawrence Earlbaum Associates, pp. 573-596.
    64. Zaki, M. J. (2001). SPADE: An Efficient Algorithm for Mining Frequent Sequences. In Proceedings of Machine Learning Journal, special issue on Unsupervised Learning (Doug Fisher, ed.), volume 42, Nos. 1/2, pp. 31-60, an/Feb 2001.
    65. Zhang, Q. and Segall, R. S. (2008). Web mining: A survey of current research, techniques, and software, International Journal of Information Technology & Decision Making 7(4), pp. 683–720.
    66. Zhijun, Z. (2007). Usability Evaluation. Human Computer Interaction Research in Web Design and Evaluation, Zaphiris, P. and Kurnianwan, S. (eds), pp. 42-75. Hershey, PA: Idea Group Publishing.
    67. Zhu, J. (2001). Using Markov Chains for structural Link Prediction in Adaptive Web Sites. Proceedings of User Modeling, 2001, pp. 298-300.
    68. Zhu, J. Hong, J., and Hughes, J.G. (2002). Using Markov Models for Web Site Link Prediction. Proceedings of the 13th conference on Hypertext and hypermedia, Maryland, USA, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE