研究生: |
廖昱程 |
---|---|
論文名稱: |
相容於邏輯製程之三維堆疊通孔電阻式記憶體 CMOS Logic-Compatible High Density 3D Via RRAM |
指導教授: | 林崇榮 |
口試委員: |
金雅琴
高明哲 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 電阻式記憶體 、邏輯製程相容 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一種相容於邏輯製程,可在三維空間堆疊的新型高密度電阻式記憶體,此元件隨著製程演進具有高微縮性以及堆疊特性,並分別在以鋁為金屬接線材料以及以銅為金屬接線材料的後端製程上成功驗證。此種新型電阻式記憶體可達成高記憶體容量與單晶片系統(SoC)設計的需求。
在鋁製程底下,電阻性記憶薄膜可以被堆疊在不同金屬層之間,其成分為鈦氮氧化物(TiON),其中鈦(Ti)與氮化鈦(TiN)在製程中被廣泛用來當作防止鋁銅合金擴散的阻擋層以及鎢的附著層材料;在雙鑲嵌銅金屬接線製程底下,此電阻性記憶薄膜由鉭氮氧化物(TaON)組成,其中鉭(Ta)與氮化鉭(TaN)也同樣在後端製程中被用作防止銅擴散的阻擋層材料。記憶薄膜的上下層電極則以垂直正交的方式連接成高密度的交叉點式(Cross-point)陣列。
利用不同元件佈局設計,可在垂直方向以串聯方式,形成鉭氧化物(TaO)二極體驅動之電阻式記憶體 (1D1R)的結構,此種1D1R記憶體在交叉點式記憶體陣列上能夠有效抑制潛電流的發生。相較於由金氧半電晶體或雙極性接面電晶體與電阻式記憶體結合的二維平面記憶體陣列,後端邏輯製程步驟相對簡單、可多層堆疊且低成本,此種獨特的製程優勢使得三維空間堆疊的新型通孔電阻式記憶體具有相當大的潛力作為高密度嵌入式非揮發性記憶體的應用。
In this thesis, a high density 3D-stacked Via RRAM compatible with CMOS logic process without any extra mask has been proposed. This novel resistive-memory device has been demonstrated successfully both in the Al-based backend process and the Cu-based backend process.
Under the Al-based backend process, RRAM consists of TiON is fabricated between W top electrode and AlCu bottom electrode. Ti and TiN are commonly adopted as the barrier layer to prevent the diffusion of AlCu alloy. TMO layer is automatically formed during BEOL manufacturing steps. In the Cu dual damascene backend process, RRAM consists of TaON is stacked between two Cu electrodes. Similarly, Ta and TaN are usually adopted as the barrier layer to prevent Cu diffusion. By arranging WLs and BLs in the orthogonal direction, a high-density and cross-point RRAM array was successfully demonstrated.
A vertical 1D1R bit cell driven by a TaO-based oxide diode is fabricated by layout adjustments. The influence of sneak current path in the cross-point array can be severely suppressed by adopting 1D1R cell structure. Comparing 1T1R and 1BJT+1R cells, the Via RRAM 1D1R cell is multi-layer stackable, and lower cost. We believe that the novel 3D-stacked Via RRAM has high potential in the applications of storage-class embedded NVM.
[1] H.-Y. Chen, S. Yu, B. Gao, P. Huang, J. Kang, and H. S. P. Wong, "HfOx based vertical resistive random access memory for cost-effective 3D cross-point architecture without cell selector," in Electron Devices Meeting (IEDM), 2012 IEEE International, 2012, pp. 20.7.1-20.7.4.
[2] S. Yu, H.-Y. Chen, Y. Deng, B. Gao, Z. Jiang, J. Kang, et al., "3D vertical RRAM - Scaling limit analysis and demonstration of 3D array operation," in VLSI Technology (VLSIT), 2013 Symposium on, 2013, pp. T158-T159.
[3] M.-C. Hsieh, Y.-C. Liao, Y.-W. Chin, C.-H. Lien, T.-S. Chang, Y.-D. Chih, et al., "Ultra high density 3D via RRAM in pure 28nm CMOS process," in Electron Devices Meeting (IEDM), 2013 IEEE International, 2013, pp. 10.3.1-10.3.4.
[4] C.-W. Hsu, C.-C. Wan, I.-T. Wang, M.-C. Chen, C.-L. Lo, Y.-J. Lee, et al., "3D vertical TaOx/TiO2 RRAM with over 103 self-rectifying ratio and sub-μA operating current," in Electron Devices Meeting (IEDM), 2013 IEEE International, 2013, pp. 10.4.1-10.4.4.
[5] Z. Fang, X. P. Wang, X. Li, Z. X. Chen, A. Kamath, G. Q. Lo, et al., "Fully CMOS-Compatible 1T1R Integration of Vertical Nanopillar GAA Transistor and Oxide-Based RRAM Cell for High-Density Nonvolatile Memory Application," Electron Devices, IEEE Transactions on, vol. 60, pp. 1108-1113, 2013.
[6] Y. Deng, H.-Y. Chen, B. Gao, S. Yu, S.-C. Wu, L. Zhao, et al., "Design and optimization methodology for 3D RRAM arrays," in Electron Devices Meeting (IEDM), 2013 IEEE International, 2013, pp. 25.7.1-25.7.4.
[7] S. Balatti, S. Ambrogio, D. Ielmini, and D. C. Gilmer, "Variability and failure of set process in HfO<inf>2</inf> RRAM," in Memory Workshop (IMW), 2013 5th IEEE International, 2013, pp. 38-41.
[8] Y. S. Chen, H. Y. Lee, P. S. Chen, P. Y. Gu, C. W. Chen, W. P. Lin, et al., "Highly scalable hafnium oxide memory with improvements of resistive distribution and read disturb immunity," in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1-4.
[9] S. Koveshnikov, K. Matthews, K. Min, D. C. Gilmer, M. G. Sung, S. Deora, et al., "Real-time study of switching kinetics in integrated 1T/ HfO<inf>x</inf> 1R RRAM: Intrinsic tunability of set/reset voltage and trade-off with switching time," in Electron Devices Meeting (IEDM), 2012 IEEE International, 2012, pp. 20.4.1-20.4.3.
[10] B. Traore, K. Xue, E. Vianello, G. Molas, P. Blaise, B. De Salvo, et al., "Investigation of the role of electrodes on the retention performance of HfOx based RRAM cells by experiments, atomistic simulations and device physical modeling," in Reliability Physics Symposium (IRPS), 2013 IEEE International, 2013, pp. 5E.2.1-5E.2.6.
[11] Y. Y. Chen, R. Degraeve, S. Clima, B. Govoreanu, L. Goux, A. Fantini, et al., "Understanding of the endurance failure in scaled HfO2-based 1T1R RRAM through vacancy mobility degradation," in Electron Devices Meeting (IEDM), 2012 IEEE International, 2012, pp. 20.3.1-20.3.4.
[12] K. G. Young-Fisher, G. Bersuker, B. Butcher, A. Padovani, L. Larcher, D. Veksler, et al., "Leakage Current-Forming Voltage Relation and Oxygen Gettering in HfO<sub>x</sub> RRAM Devices," Electron Device Letters, IEEE, vol. 34, pp. 750-752, 2013.
[13] C. Cagli, D. Ielmini, F. Nardi, and A. L. Lacaita, "Evidence for threshold switching in the set process of NiO-based RRAM and physical modeling for set, reset, retention and disturb prediction," in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1-4.
[14] K.-C. Ryoo, J.-H. Oh, H. Jeong, and B.-G. Park, "Irregular resistive switching characteristics and its mechanism based on NiO unipolar switching resistive random access memory (RRAM)," in Silicon Nanoelectronics Workshop (SNW), 2010, 2010, pp. 1-2.
[15] U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, "Filament Conduction and Reset Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices," Electron Devices, IEEE Transactions on, vol. 56, pp. 186-192, 2009.
[16] U. Russo, D. Ielmini, C. Cagli, A. L. Lacaita, S. Spiga, C. Wiemer, et al., "Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM," in Electron Devices Meeting, 2007. IEDM 2007. IEEE International, 2007, pp. 775-778.
[17] L. Zhang, R. Huang, D. Gao, P. Yue, P. Tang, F. Tan, et al., "Total Ionizing Dose (TID) Effects on TaOx-Based Resistance Change Memory," Electron Devices, IEEE Transactions on, vol. 58, pp. 2800-2804, 2011.
[18] J. Mao, Y. Cai, S. Tan, Y. Pan, Y. Zhang, and R. Huang, "Thermal impact on the resistance switching properties in tantalum oxide based RRAM," in Solid-State and Integrated Circuit Technology (ICSICT), 2012 IEEE 11th International Conference on, 2012, pp. 1-3.
[19] X. Li, H. Wu, M. Wu, N. Deng, and H. Qian, "Effect of oxygen profiles on the RS characteristics of bilayer TaOx/TaOy based RRAM," in Electron Devices and Solid-State Circuits (EDSSC), 2013 IEEE International Conference of, 2013, pp. 1-2.
[20] V. Y. Q. Zhuo, Y. Jiang, R. Zhao, L. P. Shi, Y. Yang, T. C. Chong, et al., "Improved Switching Uniformity and Low-Voltage Operation in TaOx-Based RRAM Using Ge Reactive Layer," Electron Device Letters, IEEE, vol. 34, pp. 1130-1132, 2013.
[21] J.-H. Oh, K.-C. Ryoo, S. Jung, K.-S. Oh, H. Shin, and B.-G. Park, "Effects of aluminum layer and oxidation on TiO2 based bipolar resistive random access memory (RRAM)," in Silicon Nanoelectronics Workshop (SNW), 2010, 2010, pp. 1-2.
[22] C. Hermes, F. Lentz, R. Waser, R. Bruchhaus, S. Menzel, K. Fleck, et al., "Fast pulse analysis of TiO<inf>2</inf> based RRAM nano-crossbar devices," in Non-Volatile Memory Technology Symposium (NVMTS), 2011 11th Annual, 2011, pp. 1-4.
[23] C. Kugeler, C. Nauenheim, M. Meier, A. Rudiger, and R. Waser, "Fast resistance switching of TiO<inf>2</inf> and MSQ thin films for non-volatile memory applications (RRAM)," in Non-Volatile Memory Technology Symposium, 2008. NVMTS 2008. 9th Annual, 2008, pp. 1-6.
[24] Y.-H. Tseng, C.-E. Huang, C. H. Kuo, Y. D. Chih, and C.-J. Lin, "High density and ultra small cell size of Contact ReRAM (CR-RAM) in 90nm CMOS logic technology and circuits," in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1-4.
[25] Y.-H. Tseng, C.-E. Huang, C. Kuo, Y. D. Chih, Y.-C. King, and C.-J. Lin, "A New High-Density and Ultrasmall-Cell-Size Contact RRAM (CR-RAM) With Fully CMOS-Logic-Compatible Technology and Circuits," Electron Devices, IEEE Transactions on, vol. 58, pp. 53-58, 2011.
[26] W. C. Shen, C. Y. Mei, Y. D. Chih, S.-S. Sheu, M.-J. Ysai, Y.-C. King, et al., "High-K metal gate contact RRAM (CRRAM) in pure 28nm CMOS logic process," in Electron Devices Meeting (IEDM), 2012 IEEE International, 2012, pp. 31.6.1-31.6.4.
[27] F. Nardi, S. Balatti, S. Larentis, and D. Ielmini, "Complementary switching in metal oxides: Toward diode-less crossbar RRAMs," in Electron Devices Meeting (IEDM), 2011 IEEE International, 2011, pp. 31.1.1-31.1.4.
[28] D. Lee, J. Park, S. Jung, G. Choi, J. Lee, S. Kim, et al., "Operation Voltage Control in Complementary Resistive Switches Using Heterodevice," Electron Device Letters, IEEE, vol. 33, pp. 600-602, 2012.
[29] X. Liu, S. M. Sadaf, S. Park, S. Kim, E. Cha, D. Lee, et al., "Complementary Resistive Switching in Niobium Oxide-Based Resistive Memory Devices," Electron Device Letters, IEEE, vol. 34, pp. 235-237, 2013.
[30] C. Y. Tsai, K. C. Huang, Y. W. Ting, Y. W. Liao, C. Y. Chang, J. J. Yang, et al., "Ultra-low-power switching and complementary resistive switching RRAM by single-stack metal-oxide dielectric," in VLSI Technology, Systems, and Applications (VLSI-TSA), 2013 International Symposium on, 2013, pp. 1-2.
[31] Y. Z. Tang, Z. Fang, X. P. Wang, B. B. Weng, Z. X. Chen, and G. Q. Lo, "A Novel RRAM Stack With TaOx/HfOy Double-Switching-Layer Configuration Showing Low Operation Current Through Complimentary Switching of Back-to-Back Connected Subcells," Electron Device Letters, IEEE, vol. PP, pp. 1-1, 2014.
[32] C. Yang Yin, R. Degraeve, S. Clima, B. Govoreanu, L. Goux, A. Fantini, et al., "Understanding of the endurance failure in scaled HfO<inf>2</inf>-based 1T1R RRAM through vacancy mobility degradation," in Electron Devices Meeting (IEDM), 2012 IEEE International, 2012, pp. 20.3.1-20.3.4.
[33] Y. Y. Chen, M. Komura, R. Degraeve, B. Govoreanu, L. Goux, A. Fantini, et al., "Improvement of data retention in HfO2/Hf 1T1R RRAM cell under low operating current," in Electron Devices Meeting (IEDM), 2013 IEEE International, 2013, pp. 10.1.1-10.1.4.
[34] Y. Y. Chen, R. Degraeve, B. Govoreanu, S. Clima, L. Goux, A. Fantini, et al., "Postcycling LRS Retention Analysis in HfO2/Hf RRAM 1T1R Device," Electron Device Letters, IEEE, vol. 34, pp. 626-628, 2013.
[35] C.-H. Wang, Y.-H. Tsai, K.-C. Lin, M.-F. Chang, Y.-C. King, C.-J. Lin, et al., "Three-dimensional 4F2 ReRAM cell with CMOS logic compatible process," in Electron Devices Meeting (IEDM), 2010 IEEE International, 2010, pp. 29.6.1-29.6.4.
[36] C.-H. Wang, Y.-H. Tsai, K.-C. Lin, M.-F. Chang, Y.-C. King, C.-J. Lin, et al., "Three-Dimensional 4F2 ReRAM With Vertical BJT Driver by CMOS Logic Compatible Process," Electron Devices, IEEE Transactions on, vol. 58, pp. 2466-2472, 2011.
[37] M.-F. Chang, C.-C. Kuo, S.-S. Sheu, C.-J. Lin, Y.-C. King, Z.-H. Lin, et al., "Area-efficient embedded RRAM macros with sub-5ns random-read-access-time using logic-process parasitic-BJT-switch (0T1R) cell and read-disturb-free temperature-aware current-mode read scheme," in VLSI Technology (VLSIT), 2013 Symposium on, 2013, pp. C112-C113.
[38] M. S. Seo, S. J. Baik, S. J. Kang, Y. H. HOng, J. H. Yang, and K.-S. Lim, "A ZnO cross-bar array resistive random access memory stacked with heterostructure diodes for eliminating the sneak current effect," Applied Physics Letters, vol. 98, pp. 233505-233505-3, 2011.
[39] J.-J. Huang, Y.-M. Tseng, C.-W. Hsu, and T.-H. Hou, "Bipolar Nonlinear Ni/TiO2\Ni Selector for 1S1R Crossbar Array Applications," Electron Device Letters, IEEE, vol. 32, pp. 1427-1429, 2011.
[40] Y. Huang, R. Huang, Y. Pan, L. Zhang, Y. Cai, G. Yang, et al., "A New Dynamic Selector Based on the Bipolar RRAM for the Crossbar Array Application," Electron Devices, IEEE Transactions on, vol. 59, pp. 2277-2280, 2012.
[41] R. Mandapati, A. Borkar, V. S. S. Srinivasan, P. B. P. Karkare, S. Lodha, and U. Ganguly, "On pairing bipolar RRAM memory element with novel punch-through diode based selector: Compact modeling to array performance," in Nanoelectronics Conference (INEC), 2013 IEEE 5th International, 2013, pp. 309-312.
[42] J.-J. Huang, C.-W. Kuo, W.-C. Chang, and T.-H. Hou, "Transition of stable rectification to resistive-switching in Ti/TiO2/Pt oxide diode," Applied Physics Letters, vol. 96, pp. 262901-262901-3, 2010.
[43] M. Soon, J. Lee, J. Park, J. Shin, G. Choi, S. Jung, et al., "Excellent Selector Characteristics of Nanoscale VO2 for High-Density Bipolar ReRAM Applications," Electron Device Letters, IEEE, vol. 32, pp. 1579-1581, 2011.
[44] K. Virwani, G. W. Burr, R. S. Shenoy, C. T. Rettner, A. Padilla, T. Topuria, et al., "Sub-30nm scaling and high-speed operation of fully-confined Access-Devices for 3D crosspoint memory based on mixed-ionic-electronic-conduction (MIEC) materials," in Electron Devices Meeting (IEDM), 2012 IEEE International, 2012, pp. 2.7.1-2.7.4.