研究生: |
郭俊宏 Chun-Hong Kuo |
---|---|
論文名稱: |
以植晶法合成多截面的金奈米粒子及具分支的金奈米晶體 Seeding Growth Approach to the Synthesis of Highly Faceted Au Nanoparticles and Branched Au Nanocrystals |
指導教授: |
黃暄益
Michael H. Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 英文 |
論文頁數: | 81 |
中文關鍵詞: | 植晶 、截面 、金 、奈米粒子 、奈米晶體 、分支 |
外文關鍵詞: | seeding growth, faceted, Au, branch, nanoparticle, nanocrystal |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米材料是近幾十年來非常熱門的尖端材料。其吸引中科學家注目的主要原因,在於隨尺寸大小、形狀而改變,有別於塊材的特殊物理及化學性質。為了能將奈米材料這些特殊的性質成功應用於科技、醫藥等各方面上,製作奈米材料的成熟技術是不可或缺的。要將材料成功的應用,材料的一致性是不可忽略,所以合成技術首重於控制。
在過去兩年中,本實驗室已成功地利用植晶法合成出大量尺寸一致且具明顯截面的金奈米粒子,以及具分支結構的金奈米晶體。所謂植晶法,即是將小尺寸的粒子與成長溶液(含所欲合成材料之前趨物離子溶液)混合,再加入還原劑將離子還原成原子,而還原出的原子會憑藉著加入的晶核粒子堆積,成長出較大的粒子。為了控制最後合成出來奈米材料的大小與形狀,界面活性劑的存在是必要的。界面活性劑的濃度高於臨界微胞濃度時會形成微胞,且依其本身的性質、不同濃度(高於臨界微胞濃度)、溫度,甚至是溶劑的極性而產生不同形式的微胞。由於微胞可以去包覆金屬表面,限制奈米材料成長的空間維度,所以採用不同條件改變微胞的形式,也就可以合成出各式各樣不同的奈米材料,這種利用微胞的方法也是目前世界上最為廣泛運用的合成法。
在本篇論文收錄的實驗系統中,我們採用2.5 nm的金奈米粒子當作晶核;氯金酸(HAuCl4)的水溶液當作成長溶液;利用十二烷磺酸鈉(sodium dodecyl sulfate)當作保護劑,防止粒子聚集並且控制粒子大小;還原劑則是用維他命C。在整個實驗中,改變氯金酸濃度與維他命C濃度,可製作出大量具截面的奈米金粒子或是具分支結構的金奈米晶體。為了去了解其結構以及成長機構,我們亦做了粉末X-Ray繞射、穿透式電子顯微鏡以及高解析穿透式電子顯微鏡的鑑定。鑑定結果顯示不論截面奈米金粒子或是分支結構金奈米晶體,大部分皆是由{111}晶面構成。我們亦推測粒子的截面主要是由於十二烷磺酸鈉所構成的層狀微胞所誘導形成,而分支的產生則與微胞、維他命C的酸根離子間的交互作用有極大的關係。根據所有數據顯示結果,我們非常相信欲將此兩種新穎且具特別形狀結構的金奈米材料,在經過更進一步的探討與開發後,應用於電子元件或其他用途上將不是夢想。
Nanoscale materials are a new generation of advanced materials that are expected to exhibit unusual chemical and physical properties different from those of either the bulk materials or molecules. The unique properties of nanoscale materials are largely determined by their atomic scale structures, particularly the structures and property-modifying species on the surfaces. Thus the ability to controllably grow nanoparticles of a particular size and shape offers the opportunity to observe novel physical properties and can extend our understanding of the size and shape effects on the properties of nanoscale materials. This thesis work was directed at the synthesis of highly faceted gold nanoparticles with well-controlled particle size distribution and the formation of branched Au nanocrystals. In both cases, a seeding growth approach was adopted. The seeding growth procedure involves using small Au nanoparticles (~2.5 nm in diameter) as seeds to grow into larger Au nanoparticles by mixing the seed solution with a growth solution (a solution containing the capping surfactant sodium dodecyl sulfate and the Au source HAuCl4) in the presence of a reductant ascorbic acid. Micelles formed by the aggregation of sodium dodecyl sulfate molecules were used as soft templates to control the crystal growth. Highly faceted particles exhibiting pentagonal- and hexagonal-shaped structures with controllable diameters ranging from 5 to 50 nm have been obtained. The formation of highly faceted gold nanoparticles may be facilitated by the possibly ineffective capping interaction between the lamellar micellar structures formed by the SDS moclecules and the gold nanoparticles. Using a similar seeding growth method, branched gold nanocrystals with highly faceted faces were synthesized (~40 nm in length). The branched nanocrystals showed bipod, tripod, tetrapod, and pentapod structures. To further investigate the structures and the growth mechanisms leading to these unusual Au nanoparticles, analysis of these samples were performed by using UV-Vis absorption spectroscopy, X-ray diffraction, TEM and HRTEM characterization methods.
According to both TEM and XRD results, the crystal structure of the highly faceted particles was found to consist of mostly {111} surfaces as particle size increases. Similarly, arms of the branched nanocrystals are also composed of {111} lattice planes. The multipods appear to grow along the twin boundaries of the highly faceted gold nanoparticles, as the twin boundaries on the pods originate from the centers of the nanoparticles. In the determination of the factors contributing to the formation of branched nanocrystals, the concentration of ascorbate ion was found to play a key role than that of hydrogen ions. These branched nanocrystals are stable to storage at 4 ˚C, but slowly evolve into the highly faceted crystal structures when kept at a high temperature (i.e. at 30 ˚C for 10 days). These novel and highly structured gold nanoparticles are expected to lead to new applications as they possess interesting colors and tunable light absorption properties.
CHAPTER 1 THE BACKGROUND KNOWLEDGE
1. Wong, E.; Boyd, R.S. Knight Rider Newspapers 1999, Monday, November 8.
2. Klabunde, J. K. (Editor) Nanoscale Materials in Chemistry, Wiley-Interscience, New York, 2001.
3. Bradley, J. S.; Hill, E. W.; Behal, S.; Klein, C.; Chaudret B.; Duteil, A. Chem. Mater. 1992, 4, 1234.
4. Porta, F.; Ragaini, F.; Cenini, S.; Scari, G. Chim. Ital., 1992, 122, 361.
5. Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 8410.
6. Hummel, R. E.; Wissmann, P. (Editors) Handbook of Optical Properties,,Vol. II, Optics of Small Particles, Interfaces and Surfaces, CRC Press, Boca Raton, FL, 1997.
7. Chang, S. S.; Wang, C. R. Langmuir 1999, 15, 701.
8. Sun, Y.; Xia, Y. Adv. Mater. 2003, 15, 695.
9. Liz-Marzan, L. M.; Giersig, M.; Mulvaney, P. Chem. Commun., 1996, 731.
10. Goia, D. V.; Matijevic, E. New J. Chem. 1998, 1203.
11. Harfenist, S. A.; Wang, Z. L.; Alvarez, M. M.; Vezmar, I.; Whetten, R. L. Adv. Mater. 1997, 9, 817.
12. Faraday, M. Phil. Trans. Roy. Soc., 1857, 147, 145.
13. Jana, N. R.; Gearheart, L.; Murphy, C. J. Langmuir 2001, 17, 6782.
14. Jiang, X.; Xie, Y. ; Lu, J.; Zhu, L.; He, W.; Qian, Y. Langmuir 2001, 17, 3795.
15. Liu, Y.; Male, K. B.; Bouvrette, P.; Luong, H. T. Chem. Mater. 2003, 15, 4172.
16. Su, C. H.; Wu, P. L.; Yeh, C. S. J. Phys. Chem. B 2003, 107, 14240.
17. Fujimoto, T.; Terauchi, S.; Umehara, H.; Kojima, I.; Henderson, W. Chem. Mater. 2001, 13, 1057.
18. Liu, F. K.; Ker, C. J.; Chang, Y. C.; Ko, F. H.; Chu, T. C.; Dai, B. T. J. Appl. Phys. 2003, 42, 4152.
19. Kim, F.; Song, J. H.; Yang, P. J. Am. Chem. Soc. 2002, 124, 14316.
20. Sun, Y.; Xia, Y. Adv. Mater. 2003, 15, 695.
21. Maillard, M.; Huang, P.; Brus, L. Nano Lett. 2003, 3, 1611.
22. Jana, N. R.; Geaheart, L.; Murphy, C. J. J. Phys. Chem. B 2001, 105, 4065.
23. Jana, N. R.; Gearheart, L.; Murphy, C. J. Adv. Mater. 2001, 13, 1389.
24. Jana, N. R.; Gearheart, L.; Obare, S. O.; Murphy, C. J. Langmuir 2002, 18, 922.
25. Busbee, B. D.; Obare, S. O.; Murphy, C. J. Adv. Mater. 2003, 15, 414.
26. Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15, 1957.
27. Jana, N. R.; Gearheart, L.; Murphy, C. J. Chem. Mater. 2001, 13, 2313.
28. Choi, J.; Sauer G.; Nielsch, K.; Wehrspohn, R. B.; Gosele, U. Chem. Mater. 2003, 15, 776.
29. Luan, Z.; Maes, E. M.; Zhao, D.; Czernuszewicz, R. S.; Kevan, L. Chem. Mater. 1999, 11, 3680.
30. Sun, Y.; Mayers, B. T.; Xia, Y. Nano Lett. 2002, 2, 481.
31. Sun, Y.; Xia, Y. Adv. Mater. 2003, 15, 695.
32. Sun, Y.; Xia, Y. Science 2002, 298, 2176.
33. Fievet, F.; Lagier, J. P.; Figiarz, M. Mater. Res. Soc. Bull. 1989, 14, 29.
34. Turkevich, J.; Stevenson, P. C.; Hiller, J. J. Discuss. Faraday Soc. 1951, 11, 55.
35. Milligan, W. O.; Morriss, R. H. J. Am. Chem. Soc. 1964, 86, 3461.
36. Bruche, B. Kolloid-Z. 1960, 170, 97.
37. Curtis, A. C. Angew. Chem. Int. Ed. Engl. 1988, 27, 1530.
38. Duff, D. G.; Edwards, P. P.; Johnson, B. F. G. J. Phys. Chem. 1995, 99, 15934.
39. Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Science 2001, 292, 1897.
40. Kim, J. U.; Cha, S. H.; Shin, K.; Jho, J. Y.; Lee, J. C. Adv. Mater. 2004, 16, 459.
41. Chen, C. C.; Lin, J. J. Adv. Mater. 2001, 13, 136.
42. Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; El-Sayed, M. A. Science 1996, 272, 1924.
43. Chen, S.; Wang, Z. L.; Ballato, J.; Foulger, S. H.; Carroll, D. L. J. Am. Chem. Soc. 2003, 125, 16186.
44. Hao, E.; Bailey, R. C.; Schatz, G. C.; Hupp, J. T.; Li, S. Nano Lett. 2004, 4, 327.
45. Wang, Z. L. Adv. Mater. 1998, 10, 13.
46. Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc. 1983, 105, 4481.
47. Whetten, R. L.; Khoury, J. T.; Alvarez, M. M.; Murthy, S.; Vezmar, I.; Wang, Z. L.; Cleveland, C. C.; Luedtke, W. D.; Landman, U. Adv. Mater. 1996, 8, 428.
48. Dorogi, J.; Gomez J.; Osifchin, R.; Andres, R. P.; Refenberger, R. Phys. Rev. B 1995, 52, 9071.
49. Leff, D. V.; Ohara, P. C.; Heath, J. R.; Gelbart, W. M. J. Phys. Chem. 1995, 99, 7036.
50. S. Harfenist, A.; Wang, Z. L.; Alvarez, M. M.; Vezmar, I.; Whetten, R. L. J. Phys. Chem. 1996, 100, 13904.
51. Heath, J. R.; Knobler, C. M.; Leff, D. V. J. Phys. Chem. B 1997, 101, 189.
52. Motte, L.; Billoudet, F.; Lacaze, E.; Pileni, M.-P. Adv. Mater. 1996, 8, 1018.
53. Motte, L.; Billoudet, F.; Lacaze, E.; Douin, J.; Pileni, M.-P. J. Phys. Chem. B 1997, 101, 138.
54. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc. Chem. Commun. 1994, 801.
55. Brust, M.; Fink, J.; Bethell, D.; Schiffrin, D. J.; Kiely, C. J. Chem. Soc., Chem. Commun. 1995, 1655.
56. Alvarez, M. M.; Khoury, J. T.; Schaaff, T. G.; Shafigullin, M.; Vezmar, I.; Whetten, R. L. Chem. Phys. Lett. 1997, 266, 91.
57. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Science 1995, 270, 1335.
58. Alvarex, M. M.; Khoury J. T.; Schaaff T. G.; Shafigullin, M. N.; Vezmar, I.; Whetten, R. L. Chem. Phys. Lett. 1997, 79, 1873.
CHAPTER 2 SYNTHESIS OF HIGHLY FACETED PENTAGONAL- AND HEXAGONAL-SHAPED GOLD NANOPARTICLES WITH CONTROLLED SIZES BY SODIUM DODECYL SULFATE
1. Levi, S. A.; Mourran, A.; Spatz, J. P.; van Veggel, F. C. J. M.; Reinhoudt, D. N.; Möller, M. Chem. Eur. J. 2002, 8, 3808.
2. Thomas, K. G.; Kamat, P. V. J. Am. Chem. Soc. 2000, 122, 2655.
3. Xu, P.; Yanagi, H. Chem. Mater. 1999, 11, 2626.
4. Taton, T. A.; Mirkin, C. A.; Lestinger, R. L. Science 2000, 289, 1757.
5. Mucic, R. C.; Storhoff, J. J.; Mirkin, C. A.; Lestinger, R. L. J. Am. Chem. Soc. 1998, 120, 12674.
6. Loweth, C. J.; Caldwell, W. B.; Peng, X.; Alivisatos, A. P.; Schultz, P. G. Angew. Chem. Int. Ed. 1999, 38, 1808.
7. Lin, C.-C.; Yeh, Y.-C.; Yang, C.-Y.; Chen, C.-L.; Chen, G.-F.; Chen, C.-C.; Wu, Y.-C. J. Am. Chem. Soc. 2002, 124, 3508.
8. (a) Kanehara, M.; Oumi, Y.; Sano, T.; Teranishi, T. J. Am. Chem. Soc. 2003, 125, 8708. (b) Teranishi, T.; Hasegawa, S.; Shimizu, T.; Miyake, M. Adv. Mater. 2001, 13, 1699. (c) Teranishi, T.; Sugawara, A.; Shimizu, T.; Miyake, M. J. Am. Chem. Soc. 2002, 124, 4210. (d) Wang, Z. L. Adv. Mater. 1998, 10, 13.
9. (a) He, H. X.; Zhang, H.; Li, Q. G.; Zhu, T.; Li, S. F. Y.; Liu, Z. F. Langmuir 2000, 16, 3846. (b) Zheng, J.; Zhu, Z.; Chen, H.; Liu, Z. Langmuir 2000, 16, 4409.
10. Frankamp, B. L.; Uzun, O.; Ilhan, F.; Boal, A. K.; Rotello, V. M. J. Am. Chem. Soc. 2002, 124, 892.
11. Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.; Russell, T. P.; Rotello, V. M. Nature 2000, 404, 746.
12. (a) Maye, M. M.; Chun, S. C.; Han, L.; Rabinovich, D.; Zhong, C.-J. J. Am. Chem. Soc. 2002, 124, 4958. (b) Maye, M. M.; Zheng, W.; Leibowitz, F. L.; Ly, N. K.; Zhong, C.-J. Langmuir 2000, 16, 490.
13. Novak, J. P.; Feldheim, D. L. J. Am. Chem. Soc. 2000, 122, 3979.
14. Fink, J.; Kiely, C. J.; Bethell, D.; Schiffrin, D. J. Chem. Mater. 1998, 10, 922.
15. Lin, S.-Y.; Tsai, Y.-T.; Chen, C.-C.; Lin, C.-M.; Chen, C.-H. J. Phys. Chem. B 2004, 108, 2134.
16. (a) Chang, S.-S.; Shih, C.-W.; Chen, C.-D.; Lai, W.-C.; Wang, C. R. C. Langmuir 1999, 15, 701. (b) Yu, Y.-Y.; Chang, S.-S.; Lee, C.-L.; Wang, C. R. C. J. Phys. Chem. B 1997, 101, 6661.
17. Busbee, B. D.; Obare, S. O.; Murphy, C. J. Adv. Mater. 2003, 15, 414.
18. Jana, N. R.; Gearheart, L.; Murphy, C. J. Adv. Mater. 2001, 13, 1389.
19. Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15, 1957.
20. Kim, F.; Song, J. H.; Yang, P. J. Am. Chem. Soc. 2002, 124, 14316.
21. Métraux, G. S.; Cao, Y. C.; Jin, R.; Mirkin, C. A. Nano Lett. 2003, 3, 519.
22. Zhou, Y.; Wang, C. Y.; Zhu, Y. R.; Chen, Z. Y. Chem. Mater. 1999, 11, 2310.
23. Sun, Y.; Xia, Y. Science 2002, 298, 2176.
24. Hao, E.; Bailey, R. C.; Schatz, G. C.; Hupp, J. T.; Li, S. Nano Lett. 2004, 4, 327.
25. Chen, S.; Wang, Z. L. Ballato, J.; Folger, S. H.; Carroll, D. L. J. Am. Chem. Soc. 2003, 125, 16186.
26. (a) Fleming, D. A.; Williams, M. E. Langmuir 2004, 20, 3021. (b) Liu, Y.; Male, K. B.; Bouvrette, P.; Luong, J. H. T. Chem. Mater. 2003, 15, 4172. (c) Walker, C. H.; St. John, J. V.; Wisian-Neilson, P. J. Am. Chem. Soc. 2001, 123, 3846.
27. Jana, N. R.; Gearheart, L.; Murphy, C. J. Langmuir 2001, 17, 6782.
28. Jana, N. R.; Gearheart, L.; Murphy, C. J. Chem. Mater. 2001, 13, 2313.
29. Brown, K. R.; Walter, D. G.; Natan, M. J. Chem. Mater. 2000, 12, 306.
30. Jin, Y.; Kang, X.; Song, Y.; Zhang, B.; Cheng, G.; Dong, S. Anal. Chem. 2001, 73, 2843.
31. Shimizu, T.; Teranishi, T.; Hasegawa, S.; Miyake, M. J. Phys. Chem. B 2003, 107, 2719.
32. Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 8410.
33. Kim, B.; Tripp, S. L.; Wei, A. J. Am. Chem. Soc. 2001, 123, 7955.
34. Sun, Y.; Mayers, B.; Herricks, T.; Xia, Y. Nano Lett. 2003, 3, 955.
35. Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S. J. Mater. Chem. 2002, 12, 1765.
36. Gai, P. L.; Harmer, M. A. Nano Lett. 2002, 2, 771.
37. (a) Brinker, C. J.; Lu, Y.; Sellinger, A.; Fan, H. Adv. Mater. 1999, 11, 579. (b) Raman, N. K.; Anderson, M. T.; Brinker, C. J. Chem. Mater. 1996, 8, 1682.
38. (a) Huang, M. H.; Dunn, B. S.; Zink, J. I. J. Am. Chem. Soc. 2000, 122, 3739. (b) Huang, M. H.; Dunn, B. S.; Soyez, H.; Zink, J. I. Langmuir 1998, 14, 7331.
39. Marks, L. D. Rep. Prog. Phys. 1994, 57, 603.
40. Everett, D. H. Basic Principles of Colloid Science; Royal Society of Chemistry: London, 1988; p156.
Chapter 3 SYNTHESIS OF BRANCHED GOLD NANOCRYSTALS BY A SEEDING GROWTH APPROACH
1. (a) Loweth, C. J.; Caldwell, W. B.; Peng, X.; Alivisatos, A. P.; Schultz, P. G. Angew. Chem. Int. Ed. 1999, 38, 1808. (b) Mucic, R. C.; Storhoff, J. J.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1998, 120, 12674. (c) Caswell, K. K.; Wilson, J. N.; Bunz, U. H. F.; Murphy, C. J. J. Am. Chem. Soc. 2003, 125, 13914.
2. (a) Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.; Russell, T. P.; Rotello, V. M. Nature, 2000, 404, 746. (b) Lin, C.-C.; Yeh, Y.-C.; Yang, C.-Y.; Chen, C.-L.; Chen, G.-F.; Chen, C.-C.; Wu, Y.-C. J. Am. Chem. Soc. 2002, 124, 3508. (c) Novak, J. P.; Feldheim, D. L. J. Am. Chem. Soc. 2000, 122, 3979.
3. (a) Levi, S. A.; Mourran, A.; Spatz, J. P.; van Veggel, F. C. J. M.; Reinhoudt, D. N.; Möller, M. Chem. Eur. J. 2002, 8, 3808. (b) Thomas, K. G.; Kamat, P. V. J. Am. Chem. Soc. 2000, 122, 2655.
4. Taton, T. A.; Mirkin, C. A.; Letsinger, R. L. Science 2000, 289, 1757.
5. Lin, S. Y.; Liu, S.-W.; Lin, C.-M.; Chen, C.-H. Anal. Chem. 2002, 74, 330.
6. (a) Busbee, B. D.; Obare, S. O.; Murphy, C. J. Adv. Mater. 2003, 15, 414. (b) Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15, 1957. (c) Kim, F.; Song, J. H.; Yang, P. J. Am. Chem. Soc. 2002, 124, 14316. (d) Gai, P. L.; Harmer, M. A. Nano Lett. 2002, 2, 771. (e) Chang, S.-S.; Shih, C.-W.; Chen, C.-D.; Lai, W.-C.; Wang, C. R. C. Langmuir 1999, 15, 701.
7. Sun, Y.; Xia, Y. Science 2002, 298, 2176.
8. (a) Kim, J.-U.; Cha, S.-H.; Shin, K.; Jho, J. Y.; Lee, J.-C. Adv. Mater. 2004, 16, 459. (b) Ibano, D.; Yokota, Y.; Tominaga, T. Chem. Lett. 2003, 32, 574.
9. (a) Caswell, K. K.; Wilson, J. N.; Bunz, U. H. F.; Murphy, C. J. J. Am. Chem. Soc. 2003, 125, 13914. (b) Dujardin, E.; Hsin, L.-B.; Wang, C. R. C.; Mann, S. Chem. Commun. 2001, 1264.
10. Chen, S.; Wang, Z. L.; Ballato, J.; Foulger, S. H.; Carroll, D. L. J. Am. Chem. Soc. 2003, 125, 16186.
11. Hao, E.; Bailey, R. C.; Schatz, G. C.; Hupp, J. T.; Li, S. Nano Lett. 2004, 4, 327.
12. Jana, N. R.; Gearheart, L.; Murphy, C. J. Langmuir 2001, 17, 6782.
13. Jin, Y.; Kang, X.; Song, Y.; Zhang, B.; Cheng, G.; Dong, S. Anal. Chem. 2001, 73, 2843.