簡易檢索 / 詳目顯示

研究生: 王顗涵
Wang, Yi-Han
論文名稱: 內嵌壓力感測器之微加速度計受振動負載之有限單元分析
Finite Element Analysis of Pressure Sensor Embedded in Micro-Accelerometer under Vibration Load
指導教授: 葉孟考
Yeh, Meng-Kao
口試委員: 張禎元
Chang, Jen-Yuan
蔣長榮
Chiang, Chun-Ron
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 72
中文關鍵詞: 壓力感測器微加速度計有限單元分析受力分析振動分析隨機振動分析
外文關鍵詞: Pressure Sensor, Micro-Accelerometer, Finite Element Analysis, Loading Analysis, Vibration Analysis, Random Vibration Analysis
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著工業化發展,近年來物聯網(Internet of Things)的系統與整合技術興起,從製造業、工業等之生產線上,利用物聯網系統達到機台與機台的資訊互聯。當機台能互相溝通,便能進而將製造、自動檢測技術整合,而微小化之感測元件的使用與其功能即是關鍵。本研究使用內嵌壓力感測器之微加速度計作為研究對象,以有限單元法對微感測器進行分析。使用商用軟體ANSYS®建立結構模型、網格化,因本研究之微感測器結合壓力與加速度計,對微感測器做受力分析時,給予壓力在壓力感測器之薄膜(Diaphragm)。在結果與討論中探討微感測器結構受力結果,最大應力出現在彈簧內側轉角,有應力集中之現象,若受力過大質量塊可碰觸到元件底面造成破壞。另外本研究對微感測器作模態分析,以了解微感測器可能產生共振的情況與自然頻率,並將模態分析結果提供後續的簡諧響應作分析依據。進行隨機振動分析前,為因應微感測器的使用情況,將以導電銀膠作為感測器黏貼於電路板之媒介,透過實驗得到導電銀膠的楊氏模數、蒲松比和剪力強度等機械性質。最後根據NASA F-15B飛行之振動環境測試進行隨機振動分析,探討組件遇振動負載時可能發生的失效現象。


    The Internet of thing (IoT) system integration technology is rising along with the industry development. IoT system is used for information communication between machines in production lines and how to make the miniaturized sensors work is the key. In this study, a pressure sensor embedded in a micro-accelerometer was investigated by using the finite element method. Since the micro-sensor includes a pressure sensor and a micro-accelerometer, there are two kinds of loading applied in the analysis. For the pressure measurement, the pressure was applied on the diaphragm of micro-sensor. The results show a stress concentration at the inside corner of the spring and the bottom of proof mass may touch the floor and cause failure for larger loading. The modal analysis and the harmonic analysis were performed to find the vibration characteristics of the micro sensor. A conductive silver adhesive was chosen as the medium for the micro-sensor to attach a PCB. The Young's modulus, Poisson's ratio and shear strength of the adhesive were obtained experimentally. The micro-sensor was simulated according to NASA F-15B Flight Test of random vibration test, from which the failure of the micro-sensor could be determined.

    摘要 I Abstract II 致謝 III 目錄 IV 圖表目錄 VII 第一章 緒論 1 1.1微感測器簡介 2 1.1.1 微加速度感測器 2 1.1.2 壓力感測器 3 1.2文獻回顧 4 1.2.1 振動相關研究 4 1.2.2 電子元件性能評估 6 1.2.3 黏膠分析 7 1.3研究主題 8 第二章 有限單元分析 9 2.1 有限單元分析理論 10 2.2 模態分析理論 11 2.3 簡諧響應分析 13 2.4 隨機振動分析 13 2.5 有限單元模型建立與受力、振動分析 17 2.5.1 內嵌壓力感測器之微加速度計之模型建立與網格化 17 2.5.2 受力分析之邊界條件與負載設定 18 2.5.3 模態分析之邊界條件設定 19 2.5.4 簡諧響應分析之邊界條件與負載設定 19 2.5.5 隨機振動分析之邊界條件與負載設定 20 第三章 實驗與可靠度分析 21 3.1 黏膠拉伸試驗 21 3.1.1 試片材料及試驗設備 21 3.1.2 實驗流程 21 3.2 黏膠剪力強度試驗 22 3.2.1 試片材料及試驗設備 22 3.2.2 實驗流程 22 3.3 實驗數據分析 23 3.3.1 平均值、標準差 23 3.3.2 Chauvenet’s 準則 24 3.3.3 最小平方法 24 3.4 振動試驗 25 3.4.1 JEDEC振動實驗規範 25 3.4.2 振動試驗設備 25 3.4.3 振動試驗流程 27 3.5 可靠度分析 27 第四章 結果與討論 29 4.1 微感測器受力分析 31 4.2 微感測器模態分析 32 4.3 微感測器簡諧響應分析 33 4.4 黏膠拉伸試驗 29 4.5 黏膠剪力強度試驗 29 4.6 微感測器隨機振動分析 34 第五章 結論與未來展望 35 5.1 結論 35 5.2 未來展望 36 參考文獻 37 圖表 41

    1. 微機電系統,國立科學工藝博物館官網之奈米新世界,http://nano.nstm. gov.tw/Application/Optoelectronics/Microelectromechanical.htm,引用時間:2016/10/05。
    2. 微機電系統(MEMS)之介紹,新創事業,http://www.taifer.com.tw/taifer/tf/ 044003/45.htm,引用時間:2016/10/05。
    3. 張志勇,陳正昌,物物相聯的龐大網路—物聯網,科學月刊,534期,419-427頁,2014。
    4. 李世光,胡毓忠。微機電系統與奈米科技,科學發展,378期,57-61頁,2004。
    5. 曲建仲,積體電路與微機電產業,全華科技圖書股份有限公司,新北,2013。
    6. 黃子恆,微感測器之掉落衝擊試驗與可靠度評估,碩士論文,國立清華大學動力機械工程學系,新竹,台灣,2013。
    7. http://ednjapan.com/edn/articles/1205/16/news110.html, 引用時間:2016/10/13。
    8. C. Liu,微機電系統原理與應用(李彥其、陳冠銘、謝佳旭譯),台灣培生教育出版股份有限公司,台北,2007。
    9. 何培基,樊飛雄,我國IC半導體產業發展之研究,育達研究叢刊第五、六期合刊,53-68頁,2003。
    10. 林國鼎,主機板承受隨機振動負載之疲勞壽命分析,碩士論文,國立清華大學動力機械工程學系,新竹,台灣,2004。
    11. E. Beyne. “The Rise of the 3rd Dimension for System Integration,” Interconnect Technology Conference, 2006 International, pp. 1-5, June 2006.
    12. T. Loher, D. Schiitze, W. Christiaens, K. Dhaenens, S. Priyabadini, A. Ostmann and J. Vanfleteren. “Module Miniaturization by ultra thin Package Stacking,” Electronic System-Integration Technology Conference, pp. 1-5, September 2010.
    13. D. H. Alsem, R. Timmerman, B. L. Boyce, E. A. Stach, J. Th. M. De Hosson and R. O. Ritchie. “Very High-Cycle Fatigue Failure in Micron-Scale Polycrystalline Silicon Films: Effects of Environment and Surface Oxide Thickness,” Journal of Applied Physics(AIP), Vol. 101, Issue 1, pp. 1-9, January 2007.
    14. R. Cao, Y. Chen and R. Kang. “Failure Mechanism Analysis of Quartz Accelerometer under Vibration Condition,” Prognostics and System Health Management Conference, pp. 1-5, May 2011.
    15. R. Rongen, R. Roucou, P. Wel, F. Voogt, F. Swartjes and K. Weide-Zagge. “Reliability of Wafer Level Chip Scale Package,” Microelectronics Reliability, Vol. 54, Issues 9-10, pp. 1988-1994, September 2014.
    16. J. Cui, B. Sun and Q. Feng. “Sensitivity Analysis of Factors Influencing MEMS Package Reliability,” Prognostics and System Health Management Conference (PHM-Shenzhen), pp. 1-7, May 2011.
    17. J. Wu, R. R. Zhang, S. Radons, X. Long and K. K. Stevens. “Vibration Analysis of Medical Devices With A Calibrated FEA Model,” Computers and Structures, Vol. 80, Issue 12, pp. 1081-1086, May 2002.
    18. A. C. Katageri and B. G. Sheeparamatti. “An ANN Model of Polymer based MEMS Structures: A Modal Analysis Approach,” Smart Structures and Systems (ICSSS), International Conference on, pp. 112-117, October 2014.
    19. H. T. Yang, Y. F. Su and K. N. Chiang. “Research on Packaging Effects of Three-axis SOl MEMS Accelerometer,” Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), International Conference on, pp. 1-4, April 2015.
    20. J. N. Butters and J. A. Leendertz. “Speckle Pattern and Holographic Techniques in Engineering Metrology,” Optical and laser technology, Vol. 3, Issue 1, pp. 26-30, February 1971.
    21. O. Nishizawa, T. Satoh and X. Lei. “Detection of Shear Wave in Ultrasonic Range by Using A Laser Doppler Vibrometer,” Review of Scientific Instruments, Vol. 69, Issue 6, pp. 2572-2573, 1998.
    22. R. S. Li. “A Methodology for Fatigue Prediction of Electronic Components Under Random Vibration Load,” ASME Journal of Electronic Packaging, Vol. 123, pp. 394-400, December 2001.
    23. D. Yu, A. Al-Yafawi, S. Park and S. Chung. “Finite Element Based Fatigue Life Prediction for Electronic Components under Random Vibration Loading,” Electronic Components and Technology Conference, pp. 188-193, June 2010.
    24. C. Choi and A. Dasgupta. “Fatigue of Solder Interconnects in Microelectronic Assemblies under Random Vibration,” Procedia Engineering, Vol. 74, pp. 165-169, 2014.
    25. Y. Liu and B. Sun. “Remaining Useful Life Prediction of MEMS Sensors Used in Automotive Under Random Vibration Loading,” Reliability and Maintainability Symposium (RAMS), Proceedings-Annual, pp. 1-6, January 2013.
    26. Y. S. Chen, C. S. Wang and Y. J. Yang. “Combining Vibration Test with Finite Element Analysis for The Fatigue Life Estimation of PBGA Components,” Microelectronics Reliability, Vol. 48, Issue 4, pp. 638-644, April 2008.
    27. P. Rafiee and G. Khatibi. “A Fast Reliability Assessment Method for Si MEMS based Microcantilever Beams,” Microelectronics Reliability, Vol. 54, Issue 9-10, pp. 2180-2184, September 2014.
    28. S. M. Shaby and A. V. Juliet. “Performance Analysis and Validation of Sensitivity of Piezoresistive MEMS Pressure Sensor,” Recent Advances in Intelligent Computational Systems (RAICS), pp. 692-695, September 2011.
    29. S. H. A. Rahman, N. Soin and F. Ibrahim. “Analysis of MEMS Diaphragm of Piezoresistive Intracranial Pressure Sensor,” Biomedical Engineering and Sciences (IECBES), IEEE Conference on, pp. 681-685, December 2014.
    30. F. Sarvar, D. A. Hutt and D. C. Whalley. “Application of Adhesives in MEMS and MOEMS Assembly: A Review,” Polymers and Adhesives in Microelectronics and Photonics, Polytronic 2nd International IEEE Conference on, pp. 22-28, June 2002.
    31. J. Kim, I. Kim, Y. Choi and K.W. Paik. “Studies on the Polymer Adhesive Wafer Bonding Method Using Photo-Patternable Materials for MEMS Motion Sensors Applications,” IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 2, Issue 7, pp.1118-1127, July 2012.
    32. M. S. Zarnik, D. Rocak and S. Macek. “Residual Stresses in a Pressure-sensor Package Induced by Adhesive Material during Curing: A Case Study,” Sensors and Actuators A: Physical, Vol. 116, Issue 3, pp. 442-449, October 2004.
    33. C. H. Chuang, Y. H. Huang and S. L. Lee. “The Influence of Adhesive Materials on Chip-On-Board Packing of MEMS Microphone,” Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), Symposium on, pp.1-6, May 2011.
    34. JEDEC Standard, ”Test Components and Board,” JESD22-B111, 2003.
    35. ANSYS Release 12.1, ANSYS, Inc., PA, 2009.
    36. R. D. Cook, D. S. Malkus, M. E. Plesha and R. J. Witt, Concepts and Applications of Finite Element Analysis, 4th ed., Wiley, New York, 2002.
    37. L. J. Segerlind, Applied Finite Element Analysis, 2nd ed., Wiley, New York, 1984.
    38. ANSYS User’s Manual, ANSYS Inc.
    39. 康淵,陳信吉,ANSYS入門,全華科技圖書,新北市,台灣,2005。
    40. 王栢村,振動學,全華科技圖書,新北,台灣,2014。
    41. S. S. Rao, Mechanical Vibrations, 5th ed., Pearson, London, 2011.
    42. T. Medani, D. Lautru, D. Schwartz, Z. Ren and G. Sou. “Modeling of Brain Source Using the Modified Saint Venant’s Method in FEM Resolution of EEG forward Problem,” 7th International IEEE Conference on Neural Engineering (NER), pp. 1080-1083, April 2015.
    43. W. C. Yeh, C. K. Chan, J. Hsieh, C. F. Hu, F. M. Hsu, and W. Fang. “Novel TPMS Sensing Chip with Pressure sensor Embedded in Accelerometer,” Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), pp. 1759-1762, June 2013.
    44. 呂俊麟,三維異質整合微系統晶片之可靠度分析,碩士論文,國立清華大學動力機械工程學系,新竹,2010。
    45. http://www.matweb.com/, 引用時間:2017/03/22。
    46. S. F. Wong, P. Malatkar, C. Rick, V. Kulkarni and I. Chin. “Vibration Testing and Analysis of Ball Grid Array Package Solder Joints,” Electronic Components and Technology Conference, pp.373-380, June 2007.
    47. JEDEC Standard, “Test Components and Board,” JESD22-B103-B, 2006.
    48. S. Corda, et al. “In-Flight Vibration Environment of the NASA F-15B Flight Test Fixture,” Feb. 2002.
    49. ASTM D638-14, “ Standard Test Method for Tensile Properties of Plastics,” Annual Book of ASTM Standard, 2014.
    50. ASTM D1002-10, “Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-Metal),” Annual Book of ASTM Standard, 2010.
    51. J. W. Dally and W. F. Riley, Experimental Stress Analysis, McGraw-Hill, New York, 1991.
    52. G. C. Righini, A. Tajani and A. Cutolo, An Introduction to Optoelectronic Sensor, World Scientific, New York, 2009.
    53. C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee and Y. C. Lin. “A High Performance Doppler Interferometer for Advanced Optical Storage System,” Japanese Journal of Applied Physics Part 1-Refular Papers Short Notes and Reviews Papers, Vol. 38, No. 3B, pp. 1730-1741, 1999.
    54. http://keiou.com.tw/reliability.html, 引用時間:2017/04/28。
    55. A. C. Ugural and S. K. Fenster, Advenced Mechanics of Materials and Applied Elasticity, 5th ed., Prentice Hall, London, 2011.
    56. A. M. Howatson, P. G. Lund, and J. D. Todd, Engineering Tables and Data, Springer Science & Business Media, p. 41, 2012.
    57. 陳書展,微加速度感測器受振動負載之有限單元應力分析,碩士論文,國立清華大學動力機械工程學系,新竹,2016。

    QR CODE