研究生: |
郭建億 Chien-I Kuo |
---|---|
論文名稱: |
深次微米世代微影術底部抗反射層與奈米粒子選區成長之研究 Study of bottom antireflective coating layers for deep sub-micron generation lithography and selective growth of nanoparticles |
指導教授: |
朱鐵吉
Tieh-Chi Chu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
中文關鍵詞: | 抗反射層 、化學增幅型光阻 、金奈米粒子 、選區成長 |
外文關鍵詞: | anti-reflective coating, chemical amplified photoresist, gold nanoparticles, seletive growth |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文中,共包含兩個部分,第一部分研究以感應耦合式電漿源成長低介電常數碳化矽薄膜,作為在未來真空紫外光波段(F2準分子雷射,波長為157nm)與深紫外光波段(ArF準分子雷射,波長為193nm)光阻底部抗反射層,在阻劑下加上此抗反射層可以有效降低來自底材的反射率,而且還可以適用於各種不同高反射率的底材如鋁、銅、複晶矽等等,除此之外薄膜並無鹼性氣體(NH3)的釋出而傷害到化學增幅型光阻,本抗反射層經氧電漿表面修飾後薄膜均勻性佳,因此不會產生凹缺效應(notching effect),其次薄膜的其他特性如機械性質、化學性質與物理性質等,論文中皆有詳細探討。
論文的另一部分為研究金奈米粒子沉積時受各種不同二氧化矽薄膜底材的影響與結合光學微影技術來選擇區域成長,研究中發現薄膜表面的粗糙度對於金奈米粒子的吸附扮演著極重要的角色,而薄膜含氧的比例也會對金奈米粒子密度有一定的影響。此外,由可見光-紫外光光譜儀中可以觀察出金奈米粒子在經過乙醇清洗去除光阻後其表面電漿共振特性吸收峰並不會有所變化,因此透過光學微影方式我們可以快速的製備高密度,高均勻性、高品質且任意定義金奈米粒子排列圖案於晶圓上。
In this thesis, our study contains two parts. First, low dielectric constant silicon carbide films were deposited by inductively coupled plasma to make a bottom antireflective coating layers for vacuum and deep ultraviolet lithographies. We can reduce the reflection from substrate dramatically after adding thin films. In addition, this BARC can be used for various highly reflective substrates such as Al, Cu, TaN, poly-Si, Pt, and W. This BARC film will not degrade chemical amplified photoresist because of no alkaline gas desorption during the post exposure bake procedure. This BARC was also modified the surface to form gradient absorption optical film by oxygen plasma treatment.
The second part, we study that different substrates influence gold nanoparticles deposition and combine with optical lithography to form pattern. We find that gold nanoparticles deposition has something to do with roughness of topography. And the density of gold nanoparticles relates to oxygen composition of substrates. Besides, by using UV-vis spectrometer the peaks of surface plasmon resonance don’t shift after rinsing alcohol but sulfuric acid shift. Therefore, we can pattern high uniform, high density and good quality gold nanoparticles rapidly by virtue of conventional optical lithography.
1. Semiconductor Industry Association, “International Technology Roadmap for Semiconductor 2001 Updated,(SIA publication,2001)”
2. M. Irmscher, B. Hofflinger, C. Reuter, R. Springer, C. Stauffer and M. Puttock, “Top Surface imaging process at and below quarter-micro resolution and pattern transfer into metal” J. Vac. Sci. Technol. B, Vol. 15, No.6 (1997) pp.2605-2609.
3. T. Teranishi, I. Kiyokawa and M. Miyake,“Synthesis of Monodisperse Gold Nanoparticles Using Linear Polymers as protective Agents”, Adv. Mater.,10 ,No.8 (1998).
4. 胡淑芬,“奈米科技發展之介紹”,奈米通訊,第八卷,第四期,(2001),頁 1-10
5. C. H. Lin, L. A. Wang and H. L. Chen, “Optimized bilayer hexamethyl- disiloxane film as bottom antireflective coating both KrF and ArF lithographies,” J. Vac. Sci. Technol. B, Vol. 18, No.6 (2000) pp.3323-3327.
6. C. H. Lin, L. A. Wang, “Feasibility of utilizing hexamethyldisiloxane film as a bottom antireflective coating for 157 nm lithography,” J. Vac. Sci. Technol. B, Vol. 19, No.6 (2001) pp.2357-2361.
7. T. M. Bloomstein, M. Rothschild, R.R. Kunz, D.E. Hardy, R.B. Googman and S.T. Palmacci, “Critical issues in 157nm lithography,” J. Vac. Sci. Technol. B, Vol. 16, No.6 (1998) pp.3154-3157.
8. 邱燦賓,“抗反射層運用於微影製程之簡介”,奈米通訊,第四卷,第三期,(1997),頁25-31
9. T. Gocho, T. Ogawa, M. Muroyama and T. I. Sato, “Chemical Vapor deposition of anti-reflective layer film for excimer laser lithography,”J. J. Appl. Phys., Vol. 33 (1994) pp.486-490.
10. Y. Tani, H. Mito, Y. Okuda, Y. Todokoro, T. Tatsuta, M. Sawai, O. Tsuji, “Optimization of Amorphous Carbon-Deposited Antireflective Layer for Advanced Lithography,”J. J. Appl. Phys., Vol. 32 (1993) pp.5909-5913.
11. L. A. Wang and H. L. Chen, “A novel bottom antireflective coating working for both KrF and ArF excimer laser lithography,” Microelectron Eng. 53 (2000) pp.141-144.
12. M. Xu and T. M. Ko, “Double-layer inorganic antireflective system for KrF lithography,” J. Vac. Sci. Technol. B, Vol. 18, No. 1 (2000) pp.127-135.
13. 謝境峰,“深紫外光微影技術中多層底部抗反射層與底才污染之研究”,國立海洋大學,光電科學研究所,碩士論文 (2001)
14. 陳學禮、施明昌、謝境峰,“利用多層底部抗反射層解決ArF微影樹脂光阻受鹼性污染問題”,奈米通訊,第八卷,第四期,(2001),頁38-43
15. 馬遠榮,“奈米科技與工業革命”,科儀新知,第二十三卷,第四期,(2001),頁85-92
16. 郭清癸、黃俊傑、牟中原,“金屬奈米粒子的製造”,物理雙月刊,第二十三卷,第六期,(2001),頁614-624
17. J. Zheng, Z. Zhu, H. Chen, Z. Liu, “Nanopatterned Assembling of Colloidal Gold Nanoparticles on Silicon,” Langmuir, 16, (2000) pp.4409-4412.
18. T. Sato, D.G. Hasko and H.Ahmed, “Nanoscale colloidal particles:Monolayer organization and patterning,” J. Vac. Sci. Technol. B, Vol. 15, No.1, (1997) pp.45-48.
19. J. F. Liu, L. G. Zhang, N. Gu, J. Y. Ren, Y. P. Wu, Z. H. Lu, P. S. Mao, D. Y. Chen, “Fabrication of colloidal gold micro-patterns using photolithographed self-assembled monolayers as templates”, Thin Solid Films, Vol. 327-329 (1998) pp.176-179.
20. F. Hua, J. shi, Y. Lvov and T. Cui, “Patterning of Layer-by-Layer Self Assembled Multiple Types of Nanoparticle Thin Films by Lithographic Technique,” Nano Letters, Vol. 2, No. 11, (2002) pp.1219-1222.
21. J. M. Shieh, K.C. Tsai, B.T. Dai, “Low hydrogen content in trimethylsilane-based dielectric barriers deposited by inductively coupled plasma,” Applied physics letters, Vol. 81, (2002) pp.1294-1296.
22. M. J. Loboda, “New solution for intermeyal dielectrics using trimethylsilane-based PECVD processes,” Microelectronic Eng. 50, (2000) pp.15-23.
23. H.L. Chen, H.C. Cheng, M.Y. Li, M.Y. Li, F.H. Ko, T.Y. Huang, T.C. Chu, “ Low-dielectric constant FLARE 2.2 films for bottom antireflective coating layers in KrF lithography,” Solid-State Electronics, 46, (2002) pp.1127-1131.
24. H. Wu, Z. Xiang, E. Gonzalez, J. Shan, S. Ding, “Development of 193nm B.A.R.C. for Dual Damascene Application,” Proc. of SPIE, Vol. 4690 (2002) pp.1112.
25. W. Li, L. Huo, D. Wang, G. Zeng, S. Xi, B. Zhao, J. Zhu, J. Wang, Y. Shen, Z. Lu, “Self-assembled multilayers of alternating gold nanoparticles and dithiols:approaching to superlattice,”Colloids and Surfaces A, Vol. 175 (2000) pp.217-223.
26. 莊達人,“VLSI 製造技術”,台北縣:高立圖書有限公司 (2002).
27. 羅正忠、張鼎張譯, “半導體製程技術導論”,台北市:台灣培生教育出版股份有限公司 (2002).
28. M. O. de Beeck, G. Vandenberghe, P. Jaenen, F. H. Zhang, C. Delvaux, P. Richardson, I. V. Puyenbroeck, K. Ronse, J. E. Lamb Ⅲ, J. B.C. Van der Hulst and J. Van Wingerden, “Bottom-ARC optimization methodology for 0.25 μm lithography and beyond,” Proc. of SPIE, Vol. 3334 (1998) pp.322.
29. D. F. Ilten and K. V. Patel, “standing Wave Effects in Photoresist Exposure,”Image Technology, (1971) pp.9.
30. G. S. Hwang, K. P. Giapis, “On the origin of the notching effect during etching in uniform high density plasma,” J. Vac. Sci. Technol. B, Vol. 15, No. 1, (1997) pp.70.
31. L. F. Thompson, C. G. Willson, M. J. Bowden, “Introduction to Microlithography,” (American Chemical Society publication, Washington D.C. 1994)
32. E. J. Walker, “Reduction of Photoresist Standing-Wave Effects by Post Exposure Bake,” IEEE Trans. Electron Devices, Vol. ED-22, No. 7,(1975) pp.464.
33. Cher-Huan Tan, et al., “Organic BARC process evaluation for via first dual damascene patterning ,” Proc. of SPIE, Vol. 4346 (2001) pp.804.
34. G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales,” Science, Vol. 295, (2002) pp.2481-2421.
35. M. Fayolle, J. Torres, G. Passemard, F. Fusalba, G. Fanget, D. Louis, L. Arnaud, V. Girault, J. Cluzel, H. Feldis, M. Rivoire, O. Louveau, T. Mourier, L. Broussous, “Intergration of Cu/SiOC in dual damascene interconnect for 0.1/spl mu/m technology using a new SiC material as dielectric barrier,” Interconnect Technology Conference 2002, Proceedings of the IEEE 2001 International, (2001) pp.266-268.
36. M.H. Tsai, R. Augur, V. Blaschke, R.H. Havemann, E.T. Ogawa, P.S. Ho, W.K. Yeh, S.L. Shue, C.H. Yu, M.S. Liang, “ Electromigration reliability of dual damascene Cu/CVD SiOC interconnects,”Interconnect Technology Conference 2001, Proceedings of the IEEE 2001 International, (2001) pp.266-268.
37. G. M. Whitesides and J. Christopher Love, “The art of Building Small,” Scientific American, (2001) pp.33-41.
38. L.J. Chen, L.H. Shiu, C.S. Tasi, C.H. Chang, T.K. Kang, S.Y. Chou, “The lithography challenges of dual damascene process in 0.13μm era,” Proc. of SPIE, Vol. 4346, (2001) pp.907.
39. R. R. Dammel, R. Sakamuri, et al.,“Transparent Resins for 157nm Lithography,” Proc. of SPIE, Vol. 3999, (2000) pp.350.
40. 張立德、牟季美著,“奈米材料與奈米結構”,台中市:滄海書局,(2002).
41. 陶雨台,“淺介自組裝分子薄膜”,科學月刊,第三十三卷,第十期,(2002),頁860-864
42. 王鉦源,“以化學還原法製備奈米級銀鈀微粉”,國立成功大學,化學工程所,碩士論文,(2002)
43. K. Akamatsu and S. Deki, J. Mater. Chem.,8,637 (1998).
44. http://www.devicelink.com/ivdt/archive/00/03/004.html
45. G. Guetens, K. Van. Cauwenberghe, G. De Boeck, R. Maes, U. R. Tjaden, J. Van. der.Greef, M. Highley, A. T. van. Oosterom, E.A. de Bruijn, “ Nanotechnology in bio/clinical analysis” J. Chromatography, B, 739,(2000) pp.139-150.
46. M. Brust, C. J. Kiely,“Some recent advances in nanostructure preparation from gold and silver particles:a short topical review,” Colloids and Surfaces A, 202, (2002) pp.175-186.
47. M. Xiao, “A simple method of forming small gold particles on a thin gold film,” Materials Letters 52, (2002) pp.301-303.
48. M. E. Garcia, L. A. Baker and R. M. Crooks, “Preparation and Characterization of Dendrimer-Gold Colloid Nanocomposites,” Analytical Chemistry, Vol. 71, No. 1, (1999) pp.256-258.