簡易檢索 / 詳目顯示

研究生: 黃文彥
Huang, Wen Yen
論文名稱: 具大孔洞的新穎雙金屬亞磷酸鹽之合成、 結構與性質
Extra-Large Channel Inorganic Frameworks: Syntheses, Structures and Properties of Novel Bimetal Phosphites
指導教授: 王素蘭
Wang, SueLein
口試委員: 李光華
Lii, KwangHwa
黃暄益
Huang, Hsuan-Yi
林嘉和
Lin, ChiaHer
許桂芳
Hsu, Kuei-Fang
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 272
中文關鍵詞: 雙金屬亞磷酸鹽
外文關鍵詞: Bimetal phosphite
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用中溫中壓水熱法合成六個具新穎結構的雙金屬亞磷酸鹽。根據合成反應使用的有機胺模板類型的不同(長直碳鏈單胺與長直碳鏈雙胺)分為系統A與B,內容將針對理性合成之大員環物質進行深度研究,提供有關結構對稱之細節探討、骨架排列訊息、以及單胺與雙胺之模板行為,兩系統各有三個化合物其化學式分別如下:
    (Hha)4[GaFZn7(H2O)4(HPO3)10] (A1)、(Hha)6[Ga2F2Zn9(H2O)4(HPO3)14]‧0.1TMB (A2)、(Hoda)10[Ga2F2Zn19(H2O)12(HPO3)26]‧TMB (A3)、(H2DAD)[GaFZn2(HPO3)4] (B1)、(H2DADD)2[GaFZn7(H2O)4(HPO3)10]‧4H2O (B2)、(H2DADD)3[Ga2FZn5(OH)5(HPO3)8]‧9H2O (B3)
    ha = 1-hexylamine, oda = 1-octadecylamine, DAD = 1,10-diaminodecane,
    DADD = 1,12-diaminododecane, TMB = 1,3,5-trimethybenzene.
    上述六個化合物中,A1、A2與A3分別具有28R、40R與72R隧洞;B1具有24R隧洞,B2與A1等結構,而B3則為層狀結構。六者間具有高度結構相關性,可由以下五種基本建構單元描述之:[GaF(HPO3)2]2- (單元A)、∞[Zn(HPO3)] (單元B)、[Zn(HPO3)2(H2O)4]2- (單元C)、∞[Ga2FZn(OH)5(HPO3)4]6- (單元α)與∞[Zn(HPO3)] (單元β)。各結構之重覆性單元分別為[A(BC)β(CB)A] (A1與B2)、[A(BC)BA] (A2)、[A(BC)3BA] (A3)、[ABA] (B1)與[αBα] (B3)。
    系統A:使用長直碳鏈單胺為模板,理性合成一系列晶型超大孔洞結構,將碳數由四碳(4C')延伸至18C'可使孔洞大小由24R、28R (A1)、40R (A2)、48R、56R、64R擴張至72R (A3),其中A3為晶型介孔物質,孔徑達3.5 nm,成為最大員環數的紀錄保持者。此外,TMB於此系統為極佳的擴孔劑,於反應中同時加入6C'與TMB可將A1的28R擴張至A2的40R結構,而同時加入18C'與TMB則可將64R擴張至A3的72R結構。
    系統B:使用長直碳鏈雙胺為模板,成功複製24R (B1)與28R (B2)結構,並發現系統A中未曾出現過的層狀結構B3。研究發現,不論是以單胺或雙胺合成的24R結構皆為四方晶系,但以雙胺合成的B2卻具有比A1較低的對稱性,A1為四方晶系,B2則為正交晶系,此差異之關鍵原因為同為28R結構的A1與B2中具有的軟性單元β,會因雙胺作為模板而發生些微扭曲之故。特殊的波浪狀結構B3具有異於其餘五化合物的單元α,此單元位於層間的最近與最遠距離處。將B1與B3的重覆性建構單元比較後發現,以α取代A會使24R結構降級為層狀結構,原因是α僅可朝一個維度向外連結,而A則可朝兩個維度向外連結。
    論文內容將深入探討有機胺模板與無機孔徑及建構單元排列的關係,首度揭露從微孔到介孔孔洞內有機胺模板填充的變化與影響。


    In this research, six novel bimetal phosphites were synthesized under hydrothermal conditions. These compounds are divided into systems A and B according to different types of organic template (straight carbon chain monoamine or bolaamphiphilic-type diamine). The contents include rational design synthesis of inorganic structures with extra-large pores, detailed discussion and comparison on the structure symmetry and building blocks arrangement, and different template effects between mono- and diamine templates. The chemical formula of six compounds are listed:
    (Hha)4[GaFZn7(H2O)4(HPO3)10] (A1)、(Hha)6[Ga2F2Zn9(H2O)4(HPO3)14]‧0.1TMB (A2)、(Hoda)10[Ga2F2Zn19(H2O)12(HPO3)26]‧TMB (A3)、(H2DAD)[GaFZn2(HPO3)4] (B1)、(H2DADD)2[GaFZn7(H2O)4(HPO3)10]‧4H2O (B2)、(H2DADD)3[Ga2FZn5(OH)5(HPO3)8]‧9H2O (B3)
    ha = 1-hexylamine, oda = 1-octadecylamine, DAD = 1,10-diaminodecane,
    DADD = 1,12-diaminododecane, TMB = 1,3,5-trimethybenzene.
    Among six compounds, A1, A2, and A3 possess 28R, 40R, and 72R channels, respectively; B1 possess 24R channels; B2 is isostructural with A1; B3 is a layer structure. Their structures are highly related and can be described by five building blocks: [GaF(HPO3)2]2- (block A)、∞[Zn(HPO3)] (block B)、[Zn(HPO3)2(H2O)4]2- (block C)、∞[Ga2FZn(OH)5(HPO3)4]6- (block α)與∞[Zn(HPO3)] (block β). The repeating blocks of these compounds are [A(BC)β(CB)A] (A1 and B2)、[A(BC)BA] (A2)、[A(BC)3BA] (A3)、[ABA] (B1) and [αBα] (B3).
    In system A, straight carbon chain monoamines were used for rational synthesis of crystalline structures with extra-large pores. The lengths of straight carbon chains were extended from four carbons (4C') to 18C', giving pore sizes expanding from 24R, 28R (A1), 40R(A2), 48R, 56R, 64R to 72R (A3). A3 is a crystalline mesoporous structure with pore diameter reaching 3.5 nm, and the ring-size up to 72R has become a new world record. Besides, TMB was found to be an efficient porogen in this system. By adding both 6C' and TMB into reaction, 28R structure (A1) was expanded to 40R (A2) structure. Moreover, by adding both 18C' and TMB into reaction, 64R structure was expanded to 72R (A3) structure.
    In system B, bolaamphiphilic-type diamines were used for the reproduction of 24R (B1) and 28R (B2) structures, and for the synthesis of a new layer structure B3. The 24R structures templated by mono- or diamine are both tetragonal, while diamine templated B2 was crystallized in a lower symmetry (orthorhombic) compared to A1 (tetragonal). The reason can be attributed to the block β (particularly involved in B2 and A1) which can be assumed to be a soft part and might slightly twist when templated by diamine. The puckered layer structure B3 possesses a unique block α, which was observed to reside in the nearest and farthest positions between two layers. The comparison between repeating blocks of B1 and B3 revealed that the replacement of A by α could degrade the 24R structure to a layer structure.
    This research has deeply discussed the relationships between straight carbon chain monoamines/diamines and inorganic building blocks in a rational design system, and has also firstly revealed the template effects from micro- to mesoporous regime.

    第一章緒論 1-1 簡介 1-8 1-2 論文研究目標與成果 1-12 1-3 合成方法 1-15 1-4 鑑定方法 1-28 1-5 研究成果摘要 1-29 1-6 參考文獻 1-34 第二章 富有結晶性的有序大孔洞鎵鋅亞磷酸鹽的合成與結構 2-1 簡介 2-1 2-2 實驗合成方法 2-7 2-3 化合物鑑定 2-3-1 單晶 X 光繞射晶體結構分析 2-10 2-3-2 粉末 X 光繞射分析 2-13 2-3-3 元素分析 2-15 2-3-4 熱分析 2-16 2-4 結果與討論 2-4-1 合成討論 2-18 2-4-2 晶體結構討論 2-22 2-4-3 有機單胺模板與無機骨架關係討論 2-35 2-5 結論 2-48 2-6 參考文獻 2-49 第三章 長碳鍊有機雙胺模板致有序大孔洞鎵鋅亞磷酸鹽 的合成與結構 3-1 簡介 3-1 3-2 實驗合成方法 3-7 3-3 化合物鑑定 3-3-1 單晶 X 光繞射晶體結構分析 3-13 3-3-2 粉末 X 光繞射分析 3-16 3-3-3 元素分析 3-18 3-3-4 熱分析 3-19 3-3-5 TXRF分析 3-23 3-3-6 NMR 分析 3-25 3-4 結果與討論 3-4-1 合成討論 3-28 3-4-2 晶體結構與性質討論 3-33 3-4-3 性質討論 3-51 3-5 結論 第四章 總結與未來展望 4-1 附錄一. 系統A 與B 晶體數據列表 附錄二. NMR 光譜圖 附錄三. 研究所期間所發表之論文

    1-6 參考文獻
    [1] (a) Thomas, J. M.; Raja, R.; Sankar, G.; Bell, G. Nature, 1999, 398,227-230; (b) Corma, A. Chem. Rev. 1997, 97, 2373−2419; (c) Fricke,R.; Kosslick, H.; Lischke, G.; Richter, M. Chem. Rev. 2000, 100,2303−2405.
    [2] (a) Breck, D. W. Zeolite Molecular Sieves: Structure, Chemistry and Use, 1974, J. Wiley and Sons, New York; (b) Corma, A. Chem. Rev. 1995, 95, 559.
    [3] Freyhardt, C. C.; Tsapatsis, M.; Lobo, R. F.; Balkus Jr, K. J.; Davis, M.E. Nature, 1996, 381, 295−298.
    [4] Wagner, P.; Yoshikawa, M.; Lovallo, M.; Tsuji, K.; Taspatsis, M.;Davis, M. E. Chem. Commun. 1997, 2179−2180.
    [5] Strohmaier, K. G.; Vaughan, D. E. W. J. Am. Chem. Soc. 2003, 125,16035−16039.
    [6] Wilson, S. T.; Lok, B. M.; Messina, C. A.; Cannan, T. R.; Flanigen, E.M. J. Am. Chem. Soc. 1982, 104, 1146−1147.
    [7] Moore, P. B.; Shen, J. Nature, 1983, 306, 356−358.
    [8] Davis, M. E.; Saldarriaga, C.; Montes C.; Garces, J.; Crowder, C.Nature, 1988, 331, 698−699.
    [9] Jones, R. H.; Thomas, J. M.; Chen, J. J. Solid State Chem. 1993, 102,204−208.
    [10] Estermann, M.; McCusker, L. B.; Baerlocher, C.; Merrouche, A.;Kessler, H. Nature, 1991, 352, 320−323.
    [11] (a) Gier, T. E.; Stucky, G. D. Nature 1991, 349, 508.(b) Feng, P.; Bu,
    X.; Stucky, G. D. Angew. Chem., Int. Ed. 1995, 34,1745.(c) Wang, Y.;Yu, J.; Guo, M.; Xu, R. Angew. Chem., Int. Ed. 2003, 42, 4089.
    [12] Soghomonian, V.; Chen, Q.; Haushalter, R. C.; Zubieta, J.; O’Connor,J. Science, 1993, 259, 1596.
    [13] (a) Cleitzer, C. Eur. J. Solid State Inorg.Chem.1991, 28, 77(b) Lii, K.W. J. Chem. Soc., Dalton Trans., 1996, 819.(c) Fe´rey, G. J. FluorineChem., 1995, 72, 187.
    [14] (a) Parise, J. B. Inorg. Chem. 1985, 24, 4312.(b) Guangdi, Y.;Shouhua, F.; Ruren, X. J. Chem. Soc., Chem. Commun. 1987,1254.
    [15] Dhingra, S. S.; Haushalter, R. C. J. Chem. Soc.Chem. Commun.1993,1665.
    [16] Yang, G. Y.; Sevov, S. C. J. Am. Chem. Soc. 1999, 121, 8389−8390.
    [17] Lin, C. H.; Wang, S. L.; Lii, K. H. J. Am. Chem. Soc. 2001, 123,4649−4650.
    [18] Guillou, N.; Gao, Q.; Forster, P. M.; Chang, J. S.; Noguès, M.; Park,S. E.; Férey, G.; Cheetham, A. K. Angew. Chem. Int. Ed. 2001, 40,2831−2834.
    [19] Liang, J.; Li, J.; Yu, J.; Chen, P.; Fang, Q.; Sun, F.; Xu, R. Angew.Chem. Int. Ed. 2006, 45, 2546−2548.
    [20] Yang, Y.; Li, N.; Song, H.; Wang, H.; Chen, W.; Xiang, S. Chem.Mater. 2007, 19, 1889−1891.
    [21] Lai, Y. L.; Lii, K. H.; Wang, S. L. J. Am. Chem. Soc. 2007, 129, 5350−5351.
    [22] Zou, X.; Conradsson, T.; Klingstedt, M.; Dadachov, M. S.; O’Keeffe,M. Nature, 2005, 437, 716−719
    [23] Ren, X.; Li, Y.; Pan, Q.; Yu, J.; Xu, R.; Xu, Y. J. Am. Chem. Soc.2009, 131, 14128−14129.
    [24] Furukawa, H., Cordova, K. E., Keeffe, M., Yaghi O. M. Science.2013, 341, 1230444-1-12.
    [25] (a) Norquist, A. J.; O'Hare, D. J. Am. Chem. Soc., 2004, 126,6673–6679 (b) Francis, R. J.; O'Hare, D. J. Chem. Soc., DaltonTrans.,1998,3133-3148.(c) Francis, R. J.; O'Brien, S.; Fogg, A. M.;Halasyamani, P. S.; O'Hare, D.; Loiseau, T.; Férey, G. J. Am. Chem.Soc., 1999, 121, 1002–1015.(d) Walton, R.I.; Loiseau, T.; O'Hare, D.;Férey, G. Chem. Mater., 1999, 11, 3201–3209.
    [26] Lin, H.Y.; Chin, C.Y.; Huang, H. L.; Huang, W. Y.; Sie, M. J.; Huang,L. H.; Lee, Y. H.; Lin, C. H.; Lii, K. W.; Bu, X. H.; Wang, S. L.Science. 2013, 339, 811-813.
    [27] Liao, Y. C.; Lin, C. H.; Wang, S. L. J. Am. Chem. Soc. 2005, 127,9986−9987.
    [28] Yang, Y. C.; Wang, S. L. J. Am. Chem. Soc. 2008, 130, 1146−1147.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE