簡易檢索 / 詳目顯示

研究生: 李達敏
Li, Da-Min
論文名稱: 有關於 Crag表現在 Tau果蠅的討論
A genetic study of Crag in drosophila with expressing Tau.
指導教授: 張慧雲
Chang, Hui-Yun
口試委員: 徐瑞洲
Hsu, Jui-chou
張晃猷
Chang, Huang-You
吳文桂
Wu, Wen-Gui
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 系統神經科學研究所
Institute of Systems Neuroscience
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 37
中文關鍵詞: TauCrag果蠅老化
外文關鍵詞: Crag, V24602
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 醫學的進步帶給人類長壽以及死亡率的下降,現代社會已經步入高齡化的發展,逐漸向超齡化社會的危機靠近,老化造成的問題已然成為不可避免的難題,包含論文中探討的阿茲海默症(Alzheimer’s disease,AD)、帕金森氏症(Parkinson’s disease,PD)、亨丁頓舞蹈症(Huntington’s disease)等隨著時間發生的神經退化性疾病。阿茲海默症(以下會簡稱AD)是近年來攀升並具有極大的市場潛力,約有60%-70%癡呆病例的發生原因,而在很久之前AD患者的腦中被找到Tau tangles,造成神經退化性疾病,稱為Tauopathies,認為該機制與AD有關。Tau tangles是Tau異常過度磷酸化並聚集成神經纖維聚合物(NFTs,neurofibrillary tangles),NFTs的毒性是由於引起神經細胞凋亡所造成的[1],因此許多科學家開始致力於研究Tau的路徑以及神經退化的關聯,用以調節Tau的信號傳遞而觀察Tau tangles,目的是治療類似機制產生的疾病。
    Tau是穩定微管的蛋白質MAPT,主要分布於中樞神經(CNS),在神經細胞的運輸中具有重要的地位,而我利用v24602這種 Crag RNAi去抑制Crag的表現,導致Rab3 GEF失去功能,藉此了解Tau的表現如何對細胞中的運輸造成影響以及傷害神經的評估。然而經過western blot、immunohistochemistry、行為實驗以及生命週期的大量數據分析,得出的結果是在Cragv24602所造成的損傷下,Tau的表現會在活動能力上得到補償,但是共同作用會產生更嚴重的破壞。


    The great development of medicine results in the prolonged human life and the decreasing death rate. The modern society has been an aged society and will entry to the hyper-aged society. The tasks of aging becomes unavoidable and includes those aging-related diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and so on. Alzheimer’s disease, the cause of 60–70% of cases of dementia, is recently rising and has a great potential market in the future. It was a long time that AD patients was found tau tangles in AD brains causing neurodegeneration and the scientists showed tau pathology was related to AD. Tau tangles are neurofibrillary tangles, called NFTs, assembled by abnormally hypophosphorylated Tau and the toxicity of NFTs is resulted by a neuron cell death signal (Kiran Yanamandra, Najla Kfoury, et al. 2013). Thus they try to figure out the pathway between tau pathology and neurodegeneration, using to regulate signaling transduction of tau for observation to tau tangles. They want to cure those diseases caused by this mechanism for the purpose.
    Tau is Microtubule-associated proteins (MAPTs) playing a role for stabilizing axons and vesicle transportation mostly in central nervous system (CNS). Thus we used Crag RNAi, so called CragV24602, to knock down Rab3 GEF for Crag inhibition in order to realize how Tau impacted transportation and damaged dopaminergic neurons with CragV24602. However after the analysis of numerous data from western blot, immunohistochemistry, climbing test, and lifespan, the result was that Tau expression would complement the moving ability during the impact of Cragv24602 and there was a greater damage inducing by the interaction with Crag RNAi and Tau.

    致謝…………………………………………………………………………1 Index………………………………………………………………………2 中文摘要…………………………………………………………………3 Abstract………………………………………………………………4 Introduction……………………………………………………6 Supplementary…………………………………………………12 Experimental procedures………………………14 Result……………………………………………………………………18 Discussion…………………………………………………………23 Reference……………………………………………………………26 Figures…………………………………………………………………33

    Andrea L. Marat, Hatem Dokainish, and Peter S. McPherson. 2011 The Journal of Biological Chemistry 286, Page 13791- 13800. DENN domain proteins: Regulators of Rab GTPases.
    Anna Chiarini, Ubaldo Armato, Emanuela Gardenal, et al. 2017 Frontier in Neuroscience 11, Page 217. Amyloid b-exposed human astrocytes overproduce Phospho-Tau and Overrelease It within Exosomes, Effects Suppressed by Calcilytic NPS 2143—Further Implications for Alzheimer’s Therapy.
    Aurélien Lathuilière, Pamela Valdés, Stéphanie Papin, et al. 2017 SCIENIFIC REPORT 7, Page 13556. Motifs in the tau protein that control binding to microtubules and aggregation determine pathological effects.
    Bo Xiong, Vafa Bayat, Manish Jaiswal,et al. 2012 PLoS BIOLOGY 10, e1001438. Crag is a GEF for Rab11 required for rhodopsin trafficking and maintenance of adult photoreceptor cells.
    Claude M. Wischik, Charles R. Harrington, John M.D. Storey. 2014 Biochemical Pharmacology 88, Page 529–539. Tau-aggregation inhibitor therapy for Alzheimer’s disease.
    David W. Sanders, Sarah K. Kaufman, Sarah L. DeVos, et al. 2014 Neuron 82, Page 1271-1288. Distinct Tau Prion Strains Propagate in Cells and Mice and Define Different Tauopathies.
    Etienne C Hirsch and Stéphane Hunot. 2009 Lancet Neurol 8, Page 382-397. Neuroinflammation in Parkinson's disease: a target for neuroprotection?
    Ghulam Jeelani Pir, Bikash Choudhary, Eckhard Mandelkow, et al. 2016 Molecular Neurodegeneration 11, 33. Tau mutant A152T, a risk factor for FTD/PSP, induces neuronal dysfunction and reduced lifespan independently of aggregation in a C. elegans Tauopathy model.
    Hana N. Dawson, Viviana Cantillana, Michael P. Vitek, et al. 2010 Neuroscience 169, Pages 516-531. Loss of Tau Elicits Axonal Degeneration in a Mouse Model of AD.
    Hans Zempel and Eckhard Mandelkow. 2014 Trends in Neuroscience. 37, Page 721-732. Lost after translation: missorting of Tau protein and consequences for Alzheimer disease.
    Joel J Credle, Jessica L George, Jonathan Wills, et al. 2015 Cell Death Differ 22, Page 838-851. GSK-3β dysregulation contributes to parkinson’s-like pathophysiology with associated region-specific phosphorylation and accumulation of tau and α-synuclein.
    Kanae Iijima-Ando, Michiko Sekiya, Akiko Maruko-Otake1, et al. 2012 PLoS GENETICS 8, e1002918. Loss of Axonal Mitochondria Promotes Tau-mediated Neurodegeneration and Alzheimer’s disease–related Tau phosphorylation via PAR-1
    Keith A. Vossel, Jordan C. Xu, Vira Fomenko, et al. 2015 The Journal of Cell Biology 209, Page 419-433. Tau reduction prevents Aβ-induced axonal transport deficits by blocking activation of GSK3-β.
    Keith Del Villar and Carol A. Miller. 2004 PNAS 101, Page 4210-4215. Down-regulation of DENN/MADD, a TNF receptor binding protein, correlates with neuronal cell death in Alzheimer's disease brain and hippocampal neurons.
    Kiran Bhaskar, Megan Konerth, Olga N. Kokiko-Cochran, et al. 2010 Neuron 68, Page 19-31. Regulation of Tau Pathology by the Microglial Fractalkine Receptor.
    Kiran Yanamandra, Najla Kfoury, Hong Jiang, et al. 2013 Neuron 80, Page 402-414. Anti-Tau antibodies that block Tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo.
    Koichi Wakabayashi, Fumiaki Mori, Masato Hasegawa, et al. 2006 Neuropathology 23. Co-localization of Aβ-peptide and phosphorylated tau in astrocytes in a patient with corticobasal degeneration.
    Marc Aurel Busche, Susanne Wegmann, Simon Dujardin, et al. 2019 Nature Neuroscience 22, Page 57-64. Tau impairs neural circuits, dominating amyloid-β effects, in Alzheimer models in vivo.
    María José Pérez, Katiana Vergara-Pulgar, Claudia Jara, et al. 2018 Molecular Neurobiol 55, Page 1004-1018. Caspase-Cleaved Tau Impairs Mitochondrial Dynamics in Alzheimer’s disease.
    Olivier Micheau and Jürg Tschopp. 2003 Cell 114, Pages 181-190. Induction of TNF Receptor I-Mediated Apoptosis via Two Sequential Signaling Complexes.
    Ozcelik S, Sprenger F, Skachokova Z, et al. 2016 Molecular Psychiatry 21, Page 1790-1798. Co-expression of truncated and full-length tau induces severe neurotoxicity.
    P Damier, EC Hirsch, Y Agid, and AM Graybiel. 1999 Brain 122, Pages 1437-1448. The substantia nigra of the human brain: II. Patterns of loss of dopamine-containing neurons in Parkinson's disease.
    P Dourlen, F J Fernandez-Gomez, C Dupont, et al. 2017 molecular psychiatry 22, Page 874-883. Functional screening of Alzheimer risk loci identifies PTK2B as an in vivo modulator and early marker of Tau pathology.
    Patrick P. Michel, Etienne C. Hirsch and Stéphane Hunot. 2016 Neuron 90, P675-691. Understanding Dopaminergic Cell Death Pathways in Parkinson Disease.
    Paula Merino-Serrais, Ruth Benavides-Piccione, Lidia Blazquez-Llorca, et al. 2013 Brain 136, Page 1913-1928. The influence of phospho-tau on dendritic spines of cortical pyramidal neurons in patients with Alzheimer’s disease.
    Pei Husan Chu, Hui Yun Chang. 2017 Institute of Systems Neuroscience, National Tsing Hua University. Influence of the Crag-RNAi explored via different neurons of Drosophila.
    Daniela Rossi, Liliana Brambilla, Chiara F. Valori, et al. 2005 The Journal of Biological Chemistry 280, Page 42088-42096. Defective tumor necrosis factor-alpha-dependent control of astrocyte glutamate release in a transgenic mouse model of Alzheimer disease.
    Sarah L. DeVos1, Bianca T. Corjuc1, Derek H. Oakley, et al. 2018 Frontiers Neuroscience 12, Page 267. Synaptic Tau Seeding Precedes Tau Pathology in Human Alzheimer's disease Brain.
    Serge Gauthier, Howard H Feldman, Lon S Schneider, et al. 2016 Lancet 388 Page 2873-2884. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial.
    Shun Nagashima, Toshifumi Fukuda, and Yuka Kubota, et al. 2011 Neuroscience Research 71 Page e194. CRAG Protects Neuronal Cells Against Cytotoxicity of Expanded Polyglutamine Protein Partially via c-fos-dependent AP-1 Activation.
    Travis J. A. Craddock, Jack A. Tuszynski and Stuart Hameroff. 2012 PLoS Computational Biology 8, e1002421. Cytoskeletal Signaling: Is Memory Encoded in Microtubule Lattices by CaMKII Phosphorylation?
    Xin Zhang, Lixi Li, Xiaojie Zhang, et al. 2013 Neurobiology of Aging 34, Pages 663-678. Prenatal hypoxia may aggravate the cognitive impairment and Alzheimer’s disease neuropathology in APPSwe/PS1A246E transgenic mice.
    Yi Hua Yang, Hui Yun Chang. 2016 Institute of Systems Neuroscience, National Tsing Hua University. Screening of Genetic Candidates of Alzheimer’s Disease and Parkinson’s Disease in Drosophila Compound Eyes.
    Zhuohao He, Jing L Guo, Jennifer D McBride, et al. 2017 Nature Medicine 24 Page 29-38. Amyloid-β plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation.

    QR CODE