簡易檢索 / 詳目顯示

研究生: 李明諭
Li, Ming-Yu
論文名稱: Probabilistic Interference Constrained Robust Cognitive Beamforming with Channel Uncertainties
機率上的干擾限制針對通道不確定性的感知無線電波束成形技術
指導教授: 吳仁銘
Wu, Jen-Ming
口試委員: 王蒞君
張縱輝
吳仁銘
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 41
中文關鍵詞: 通道不確定性干擾容忍門檻門檻超越機率觀察區間強健程度
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文主要是探討在有一個擁有頻道使用權利的多天線使用者 (primary user, PU) 的環境下,設計一個多重輸入/輸出 (multi-input, multi-output, MIMO) 的感知通訊 (cognitive radio, CR) 中的次要使用者 (secondary user, SU) 系統。設計這個系統兩個主要部份:1. 在機率條件下針對通道的不確定性上對主要使用者造成的干擾的分析 以及 2. 在次要使用者的接收端針對通道不確定性的設計。次要使用者在傳輸的時候必需針對主要使用者和次要使用者之間的通道不確定性來限制對於主要使用者機率上的干擾。為了設計一個在機率上干擾條件下僅在接收端有通道資訊(channel state information)的系統,次要使用者採用正交時空區塊碼 (orthogonal space time block code, OSTBC) 作為編碼。另一方面,在次要使用者的接收端也需要針對次要使用都的傳送端與接收端間的通道不確定性做設計。本篇論文在給定的機率干擾絛件下,將觀察時間最小化使得頻帶使用效率可以最大化。接著,我們分析對於感知使用者傳送端與接收端因為通道訊息估計所□生的通道不確定性並且分析其與接收端設計的關係。最後,我們會摸擬並且分析對於干擾主要使用者的機率以及次要使用者間的誤碼率 (bit error rate) 的結果。對於模擬的結果,我們可以得知此篇論文的架構是可行的。


    This thesis consider a multi-input-multi-output (MIMO)
    cognitive environment with a multi-antenna primary user (PU) who has the spectrum license and does not cooperate with the cognitive user (CU). This thesis addresses two problems: 1. the robust cognitive transmission subject to the probabilistic interference constraints to the PU, and 2. the robust cognitive receive beamforming subject to the channel uncertainties. The CU transmits the signal opportunistically with constrained interference to the PU on the influence caused by the channel estimation errors at the cognitive system. The probability of the interference from CU to
    PU exceeding the tolerant threshold is constrained and trades off with spectrum utilization efficiency. With constrained interference to PU, the CU encodes signals on the orthogonal space time block code (OSTBC) s.t. the cognitive system is channel state information only at the receiver (CSIR). On the other hand, the robust receiver is directed against the channel uncertainties between transmitter and receiver caused by training estimation
    error. In this thesis, we keep the interference from CU to PU under a probabilistic threshold and maximize the spectrum
    efficiency by minimize the observation duration. Therefore, we analyze the channel uncertainties between CU's transmitter and receiver caused by training error and find the robustness corresponding to the estimation errors. Finally, we simulate the probability of the interference exceeding tolerant threshold at the PU and the BER performance of the CU. From the simulation results, we make sure that the analysis of cognitive scheme is workable.

    1 Introduction 1.1 Backgrounds and Motivations 1.2 Thesis Organization 1.3 Notations 2 System Model 2.1 A viewpoint of spectrum holes 2.2 Spectrum holes in beamforming domain and the spectrum efficiency problem 3 Probabilistic interference Constraint Analysis 3.1 The lower bound of the observation duration corresponding to the constrained probability 3.2 The minimum observation duration estimation scheme 4 Robust Linear Receiver with OSTBC Encoding under Channel Uncertainties 19 4.1 Minimum variance beamforming with perfect CSI between CUs 4.2 Robust linear receiver with channel uncertainties 4.3 The robustness level of the linear receiver with the channel estimation error 5 Simulations 6 Conclusions

    [1] I. Mitola, J. and J. Maguire, G.Q., ``Cognitive radio: making software radios more personal,'' IEEE Personal Communications, vol. 6, no. 4, pp. 13 {18, Aug. 1999.

    [2] T. Yucek and H. Arslan, ``A survey of spectrum sensing algorithms for cognitive radio applications,'' IEEE Communications Surveys Tutorials, vol. 11, no. 1, pp. 116 -130, rst 2009.

    [3] S. Mishra, R. Brodersen, S. Brink, and R. Mahadevappa, ``Detect and avoid: an ultra-wideband/wimax coexistence mechanism [topics in radio communications],'' IEEE Communications Magazine, vol. 45, no. 6, pp. 68 -75, 2007.

    [4] R. Yang, Z. Zhou, L. Zhang, and C. Yu, \Detection and avoidance scheme for direct-sequence ultra-wideband system: a step towards cognitive radio,'' IET Communications,
    vol. 2, no. 8, pp. 1043 -1050, 2008.

    [5] W. N. Shunqiao Sun and Y. Zhu, ``Robust power control in cognitive radio networks: A distributed way,'' in proc. IEEE International Conference on Communications. ICC'11.

    [6] G. B. G. S. P. Emiliano DallAnese, Seung-Jun Kim, ``Power allocation for cognitive radio networks under channel uncertainty,'' in proc. IEEE International Conference on Communications. ICC'11.

    [7] Z. Xu, ``On the second-order statistics of the weighted sample covariance matrix,'' IEEE Trans. on Signal Proc., vol. 51, no. 2, pp. 527 - 534, feb 2003.

    [8] C. Fernandes, G. Favier, and J. Mota, ``Blind multipath mimo channel parameter estimation using the parafac decomposition,'' in proc. IEEE International Conference on
    Communications. ICC '09, 14-18 2009, pp. 1 -5.

    [9] G. Zheng, K.-K.Wong, and B. Ottersten, ``Robust cognitive beamforming with bounded channel uncertainties,'' IEEE Trans. on Signal Proc., vol. 57, no. 12, pp. 4871 -4881,
    dec. 2009.

    [10] G. Zheng, S. Ma, K. kit Wong, and T.-S. Ng, ``Robust beamforming in cognitive radio,'' IEEE Trans. on Wireless Commun., vol. 9, no. 2, pp. 570 -576, 2010.

    [11] M. Islam, Y.-C. Liang, and R. Zhang, ``Robust precoding for orthogonal space-time block coded mimo cognitive radio networks,''in proc. IEEE Workshop on Signal Processing Advances in Wireless Communications SPAWC '09, 2009, pp. 86 -90.

    [12] X. Gong, A. Ishaque, G. Dartmann, and G. Ascheid, ``Mse-based linear transceiver optimization in mimo cognitive radio networks with imperfect channel knowledge,'' in proc. IEEE International Workshop on Cognitive Information Processing. CIP'10, june 2010, pp. 105-110.

    [13] W. Zhi, Y.-C. Liang, and M. Chia, ``Robust transmit beamforming in cognitive radio networks,'' in proc. IEEE Singapore International Communication Systems. ICCS'08,
    2008, pp. 232 -236.

    [14] M. Biguesh and A. Gershman, ``Mimo channel estimation: optimal training and trade-offs between estimation techniques,'' in proc. IEEE International Conference on Com-
    munications. ICC'04, vol. 5, 20-24 2004, pp. 2658 - 2662 Vol.5.

    [15] Z. Xu, ``Perturbation analysis for subspace ecomposition with applications in subspace-based algorithms,'' IEEE Trans. on Signal Proc., vol. 50, no. 11, pp. 2820 - 2830, nov
    2002.

    [16] B. Friedlander and A. Weiss, ``On the second-order statistics of the eigenvectors of
    sample covariance matrices,'' IEEE Trans. on Signal Proc., vol. 46, no. 11, pp. 3136
    -3139, nov 1998.

    [17] V. Tarokh, H. Jafarkhani, and A. Calderbank, ``Space-time block codes from orthogonal designs,'' IEEE Trans. on Inform. Theory, vol. 45, no. 5, pp. 1456 - 1467, jul 1999.

    [18] S. Alamouti, ``A simple transmit diversity technique for wireless communications,'' IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451 -1458, oct 1998.

    [29] M. Gharavi-Alkhansari and A. Gershman, ``Constellation space invariance of orthogonal space-time block codes,'' IEEE Trans. on Inform. Theory, vol. 51, no. 1, pp. 331 - 334, jan. 2005.

    [20] J. Capon, ``High-resolution frequency-wavenumber spectrum analysis,'' Proceedings of the IEEE, vol. 57, no. 8, pp. 1408 - 1418, aug. 1969.

    [21] Y. Rong, S. Shahbazpanahi, and A. Gershman, ``Robust linear receivers for space-time block coded multiaccess mimo systems with imperfect channel state information,'' IEEE
    Trans. on Signal Proc., vol. 53, no. 8, pp. 3081 - 3090, aug. 2005.

    [22] H. Li, X. Lu, and G. Giannakis, ``Capon multiuser receiver for cdma systems with space-time coding,'' IEEE Trans. on Signal Proc., vol. 50, no. 5, pp. 1193 - 1204, may
    2002.

    [23] F. Gao, R. Zhang, Y.-C. Liang, and X. Wang, ``Design of learning-based mimo cognitive radio systems,'' IEEE Trans. on Vehicular Technology, vol. 59, no. 4, pp. 1707 -1720,
    may 2010.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE