簡易檢索 / 詳目顯示

研究生: 林佩君
Pei-Chun Lin
論文名稱: 介觀量子點之D'yakonov Perel' 的自旋弛豫研究
D'yakonov Perel' Spin Relaxation in Mesoscopic Quantum Dots
指導教授: 牟中瑜
張正宏
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 32
中文關鍵詞: 自旋量子點弛豫半導體
外文關鍵詞: spin, quantum dots, relaxation, semiconductor
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文主要探討了對相同面積下各種不同邊長比例和各種不同邊界性質的量子點的D'yakonov-Perel'自旋弛豫值。對於不同邊長比例的量子點,我們更深入探討兩種不同的邊界性質:完全光滑和完全粗糙的。而應用在論文研究的主要方法為半古典的路徑積分數值模擬法,內容概要是這樣的:在第一章中,我們探討了論文研究的緣由,並對這篇論文作了簡單初步的介紹。接著在第二章中,我們推導出一些論文相關的實用公式。作法是由一些基本的有關Rashba的自旋軌道交互作用推導,再利用半古典的路徑積分理論延伸,從而得到具有Rashba的自旋軌道交互作用的電子在二維自由空間的能量的本徵值及本徵態。在第三章,我們解釋論文中數值模擬的方法,分別使用不同的自旋軌道耦合能量來測量,並實際說明了自旋弛豫極化的過程及最後的結果。在第四章,我們將第三章的光滑面改為完全粗糙面,用第三章同樣的方法來操作。在第五章,我們分別探討了單顆電子不同軌跡的自旋演化結果,這樣的結果有助於我們瞭解在第三章和第四章所得到的終結自旋極化值為正的原因。在第六章,我們則對論文的結果作了一番討論並導引出一些結論。主要有:我們發現具有完全光滑邊界的量子點有較慢的自旋弛豫。除此之外,在所有的同樣邊界性質的量子點中,正方形的量子點具有最大的終結自旋極化值。因此我們可以說明,在本文所提到的所有量子點系統中,正方形的量子點是最佳的自旋資訊儲存系統。


    This thesis studies the D'yakonov-Perel' spin relaxation in various rectangular quantum dots with different side length ratios of the same area. The boundaries include smooth and rough cases. The method used was semiclassical path integral simulation. In Chapter 1, a brief introduction for the thesis is given. Thereafter, Chapter 2 derives some useful formulas for this study. It begins with the fundamental theory for classical spin evolution induced by the Rashba SOI and its semiclassical
    version in path integral formalism and followed by the eigenstates and the eigenvalues of the Hamiltonian with Rashba SOI in the 2D free space. Chapter 3 explains our simulation method and demonstrates the spin polarization relaxation scenarios and their final residual polarization values in different spin-orbit coupling strengths in smooth systems. Chapter 4 extends the study from smooth systems to rough systems. In Chapter 5, the properties of the spin evolution along individual trajectories are studied. The result helps us understand the positive residual spin polarization in chapters 3 and 4. In Chapter 6 some discussions and conclusions are given. We found that the smooth boundary systems have a slower spin relaxation. Furthermore, the square quantum dot has a largest residual spin polarization. Therefore, among all smooth rectangular quantum dots of the same area, the smooth square is the best system for spin information storage.

    1 Introduction 2 2 Spin dynamics induced by Rashba spin-orbit interaction 5 2.1 Classical and semiclassical spin evolution . . . . . . . . . . . . 5 2.2 Rashba Hamiltonian in 2D free space . . . . . . . . . . . . . . 9 3 Smooth quantum dots 12 3.1 Spin relaxation scenarios in smooth dots . . . . . . . . . . . . 14 3.2 Spin residual values in smooth dots . . . . . . . . . . . . . . . 16 4 Rough quantum dots 17 4.1 Spin relaxation scenarios in rough dots . . . . . . . . . . . . . 17 4.2 Spin residual values in rough dots . . . . . . . . . . . . . . . . 19 5 Spin evolution along individual trajectories 21 6 Conclusion and Outlook 31

    [1] Igor Zuti´c, Jaroslav Fabian and S.Das. Sarma, Review of modern
    physics, 76, 323 (2004).
    [2] S. A. Wolf, et al., Science 294, 1488 (2001).
    [3] P. Ball, Nature 404, 918 (2000).
    [4] J.B. Miller, D.M. Zumbhl, C.M. Marcus, Y.B. Lyanda-Geller, D.
    Goldhaber-Gordon, K. Campman, and A.C. Gossard, Phys. Rev. Lett.
    90, 076807 (2003); J.-H. Cremers, P. W. Brouwer, and V. I. Fal’ko,
    Phys. Rev. B 68, 125329 (2003); D. M. Zumbhl, J. B. Miller, C. M.
    Marcus, K. Campman, and A. C. Gossard, Phys. Rev. Lett. 89, 276803
    (2002); I.L. Aleiner and V.I. Fal’ko, Phys. Rev. Lett. 87, 256801 (2001).
    [5] C. H. Chang, A. G. Mal’shukov, and K. A. Chao, cond-mat/0405212.
    [6] O. Zeitsev, D. Frustaglia, and K. Richter, cond-mat /0405266 (2004).
    [7] Yu. L. Bychkov and E.I. Rashba, J. Phys. C 17,6093(1984).
    [8] L. W. Molenkamp, G. Schmidt V. Shlyapin, and G. E. W. Bauer, Phy.
    Rev. B 64, 121202(R)(2001).
    [9] J. Sinova, Dmitrie Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and
    A. H. MacDonald, cond-mat/0307663 v2.(2004).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE