簡易檢索 / 詳目顯示

研究生: 鄭力維
Jheng, Li-Wei
論文名稱: 一個可在100ns的時段上達到1.5ps時間解析度的超寬頻脈衝雷達之時序電路
A Timing Circuitry of UWB Impulse Radar Achieving 1.5ps Time Resolution over 100ns
指導教授: 朱大舜
Chu, Ta-Shun
口試委員: 朱大舜
Chu, Ta-Shun
王毓駒
Wang, Yu-Jiu
吳仁銘
Wu, Ren-Ming
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 39
中文關鍵詞: 時序電路鎖相迴路
外文關鍵詞: timing circuitry, phase-locked loop
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    系所別:電機工程學系 系統組
    論文名稱:一個可在週期為100ns脈衝上達到1.5ps時間解析度的超寬頻脈衝雷達之時序電路
    指導教授:朱大舜 博士
    研究生:101061594 鄭力維

    在現今我們所熟知的無線技術,不管是藍芽或 Wi-Fi 等等,主要的發展應用還是受制於頻寬,使得許多處理量大或品質高的資訊及檔案,無法快速傳輸;而超寬頻就是解決目前資訊用途短距傳輸的關鍵。
    超寬頻技術在過去已有不短的發展時間,尤其是在軍事方面,可以用於雷達,偵測空中的不明飛行物體;或者用於探測地底下的不明物體,如地雷,以保障人員生命安全等等。
    而超寬頻技術具有體積小、耗電低、成本低等優點,因此如果將超寬頻技術導入民生用途上想必非常適合,也會為人類的生活帶來更多的便利。
    在本論文中,為了讓超寬頻脈衝雷達能擁有更好的時間解析度,提出並實現了一個使用鎖相迴路與位移寄存器結合的時序電路,使超寬頻脈衝雷達能在週期為100ns的脈衝上,達到1.5ps的時間解析度。其中包含三個鎖相迴路,一個用來確保雷達傳送端與接收端訊號的同步性,另外兩個則用於時序電路的實現。時序電路以位移寄存器為主,分成兩個部分,一部分為粗調電路,另一部分為細調電路,分成粗細調主要是防止使用太多級位移寄存器而導致電路無法運作。傳送端與接收端訊號經過位移寄存器後會產生出多個相位不同的訊號,最後再使用MUX選出我們需要的傳送端與接收端訊號做比較,計算出兩端的距離。
    本論文共分五個章節,第一章為研究動機與簡介;第二章為鎖相迴路架構、及內部子電路架構與操作原理;第三章為本論文提出的時序電路架構與操作原理;第四章為軟體之模擬結果,並做討論;第五章為總結。


    Abstract

    Department:Electrical Engineering
    Title:A Timing Circuitry of UWB Impulse Radar Achieving 1.5ps Time Resolution over 100ns
    Advisor:Prof. Ta-shun Chu
    Graduate student:101061594 Li-Wei Jheng

    In today's wireless technology as we know, whether Bluetooth or Wi-Fi, and so on, the main

    subjects of the developing application are limited to the bandwidth, making many large capacity

    and high-quality information and files cannot be fast transferred. The ultra-wideband technology

    is the key to solve the current application of short-range transmission of information.

    Ultra-wideband technology has developed not short of time in the past, especially in the

    military field. Such as radar can be used to detect UFO or unknown object underground, such as

    mines, in order to protect the safety of personnel and so on. The advantage of ultra-wideband

    technology is small size, low power consumption, and low cost, so if imported ultra wideband

    technology into livelihood purposes is very suitable presumably, it will bring more convenience to

    people's lives.

    In this thesis, to make ultra-wideband impulse radar can have a better time resolution, we

    proposed and implemented a timing circuitry combines phase-locked loops and shift registers,

    making the ultra-wideband impulse radar can achieve 1.5ps time resolution over 100ns. It contains

    three phase-locked loops, one to ensure the synchronization of the transmitter and receiver radar

    signal, the other two are used to implement the timing circuitry. Timing circuitry is mainly

    constituted by shift registers, it divided into two parts, one part for the coarse-tune circuit, the

    other for the fine-tune circuit. We do it is to prevent to use too much shift registers which will led

    to the circuit does not work. Transmitter and receiver signal after the shift register will generate

    multiple signals of different phases, and finally we need to use the MUX select transmitter and

    receiver signal compared to calculate the distance from both ends.

    This Thesis is divided into five chapters, the first chapter is the motivation and Introduction,

    the second chapter is phase-locked loop architecture, and internal sub-circuit architectures and

    principles of operation, the third chapter is the timing circuitry structure and principle of operation

    that we have proposed, chapter IV is the simulation results, and we’ll make some discussions, and

    the fifth chapter is summary.

    目錄 摘要…………………………………………………………………………………... 1 Abstract………………………………………………………………………………. 2 目錄…………………………………………………………………………………... 3 圖目錄………………………………………………………………………………... 5 表目錄………………………………………………………………………………... 7 第一章 緒論……………………………………………………………. 8 1.1 研究動機……………………………………………………………………. 8 1.2 論文簡介……………………………………………………………………. 9 第二章 鎖相迴路…………………………………………………….. 10 2.1 鎖相迴路架構及原理…………………………………………………….. 10 2.2 相位頻率偵測器………………………………………………………….. 11 2.3 電荷幫浦………………………………………………………………….. 13 2.4 迴路濾波器……………………………………………………………….. 14 2.5 電壓控制震盪器………………………………………………………….. 15 2.6 除頻器…………………………………………………………………….. 15 第三章 電路設計……………………………………………………... 17 3.1 時序電路設計…………………………………………………………….. 17 3.1.1 電路架構…………………………………………………………... 17 3.1.2 電路時序…………………………………………………………... 17 3.2 鎖相迴路設計…………………………………………………………….. 20 3.2.1 輸入訊號端之鎖相迴路…………………………………………... 20 3.2.2 接收端之鎖相迴路………………………………………………... 21 3.2.3 傳送端之鎖相迴路………………………………………………... 22 第四章 模擬結果……………………………………………………... 23 4.1 相位頻率偵測器………………………………………………………….. 23 4.1.1 pre-simulation………………………………………………………. 23 4.1.2 post-simulation……………………………………………………... 24 4.2 電荷幫浦………………………………………………………………….. 25 4.3 LC電壓控制震盪器……………………………………………………….. 27 4.3.1 震盪在4.8GHz之震盪器………………………………………….. 27 4.3.2 震盪在2.56GHz之震盪器………………………………………… 28 4.3.3 震盪在5.1GHz之震盪器………………………………………….. 29 4.4 除頻器…………………………………………………………………….. 30 4.5 鎖相迴路………………………………………………………………….. 32 4.5.1 輸入訊號端之鎖相迴路…………………………………………... 32 4.5.2 接收端之鎖相迴路………………………………………………... 33 4.5.3 傳送端之鎖相迴路………………………………………………... 34 4.6 電路佈局………………………………………………………………….. 35 第五章 總結…………………………………………………………... 36 5.1 結論……………………………………………………………………….. 36 5.2 展望……………………………………………………………………….. 36 參考文獻………………………………………………………………. 37

    參考文獻

    [1] 劉深淵, 楊清淵, 鎖相迴路, 滄海書局, 2006.

    [2] 高曜煌, 射頻鎖相迴路IC設計, 滄海書局, 2005.

    [3] W. RHEE, “Design of high performance CMOS charge pumps in phase locked loop”. Proc.

    IEEE Int. Symp. Circuits and Systems, 1999, Vol. 1, pp. 545-548.

    [4] C.S. Vaucher, I. Ferencic, M. Locher, S. Sedvallson, U. Voegli, and Z. Wang, “A Low-power

    Truly-modular 1.8GHz Programmable Divider in Standard CMOS Technology.” IEEE

    Journal of Solid-State Circuit, vol. 35, no. 7, pp. 1039-1046, July 2000.

    [5] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp. 1380-1385,

    Oct. 1973.

    [6] J. Yuan and C. Svensson, “High-speed CMOS circuit technique,” IEEE J. Solid-State Circuit,

    vol. 24, no. 2, pp. 62-70, 1989.

    [7] J. Lee, M. Keel, S. Lim, and S. Kim, “Charge pump with perfect current matching

    characteristics in phase-locked loops,” Electronics Letters, vol. 36, no. 23, pp. 1907-1908,

    Nov. 2000.

    [8] A.M.G. Arguello, J. Navarro, W. Van Noije, “A 3.5 mW Programmable High Speed

    Frequency Divider for a 2.4 GHz CMOS Frequency Synthesizer,” IEEE Integrated Circuits

    and Systems Design, pp. 144-148, Sep. 2005.

    [9] Wen-Ting Liu, Xiao-Lin Zhang, Wen-Bo Xia, “A low power high-speed programmable

    divider for GHz frequency synthesizer,” Communications, Circuits and Systems (ICCCAS),

    2010 International Conference, pp. 714-717, July 2010.

    [10] S. B. Sleiman, J. G. Atallah, S. Rodrigues, A. Rusu, and M. Ismail, “Wide-Division-Range

    High-Speed Fully programmable Frequency Divider,” IEEE Workshop on Circuits and

    Systems and TSISA conf., pp. 17-20, June 2008.

    [11] Won-Hyo Lee, Jun-Dong Cho, Sung-Dae Lee, “A High Speed and Low Power

    Phase-Frequency Detector and Charge-pump,” Proceedings of the ASP-DAC ’99. Asia and

    South Pacific on Design Automation Conference, pp. 18-21, Jan. 1999.

    [12] H.M.S. Fazeel, L. Raghavan, C. Srinivasaraman, M. Jain, “Reduction of Current Mismatch in

    PLL Charge Pump,” IEEE Computer Society Annual Symp., pp. 7-12, May 2009.

    [13] M.M. Mansour, “On the design of low phase-noise CMOS LC-tank oscillators,” IEEE

    Microelectronics on International Conference, pp. 407-412, Dec. 2008.

    [14] Ding-Ming Xie, L. Forbes, “Phase noise on a 2-GHz CMOS LC oscillator,” IEEE

    Computer-Aided Design of Integrated Circuits and Systems on Transactions, vol. 19, no. 7,

    pp. 773-778, July 2000.

    [15] J. Roche, W. Rahajandraibe, L. Zaid, G. Bracmard, H. Barthelemy, “A low-noise fast-settling

    phase locked loop with loop bandwidth enhancement,” IEEE Northeast Workshop on

    Circuits and Systems and TAISA Conference, pp. 165-168, Jun. 2008

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE