簡易檢索 / 詳目顯示

研究生: 詹佑晨
Chan, Yu-Chen
論文名稱: 整合有機無機與仿生複合概念於奈米複晶及奈米多層膜內進行微結構、組成物及製程控制以達機械性質之強化
Architecture, Component and Process Control in Nanocomposite and Nanomultilayer for Mechanical Strengthening Coatings via Organic, Inorganic and Bio-inspired Hybrid Approach
指導教授: 杜正恭
Duh, Jenq-Gong
口試委員: 杜正恭
李志偉
陳正士
吳芳賓
陳柏宇
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 212
中文關鍵詞: 表面改質技術仿生材料奈米多層薄膜超晶格奈米複晶薄膜有機/無機多層薄膜二硼化鈦/鋯銅鎳鋁多層薄膜
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面改質技術持續不斷地發展以追求更佳的機械強度、熱穩定性、抗腐蝕及抗磨耗特性。近來奈米科技的大興,對新穎薄膜的設計再度灌注入一股新的活水,綜觀而言,我們可將此視為精確控制薄膜微結構、組成物及鍍覆製程的結果,造就各種性質的急遽提升。
    為了衝擊奈米複合與奈米多層保護性薄膜的設計概念,進一步開創一嶄新思維模式,本研究企圖引入仿生材料的觀點。第一部分重點置於無機薄膜性質的改良,俾以多相及梯度材料的設計取代傳統單相及均質性之薄膜。第二部分則強調新穎仿生多層薄膜的開發,並嘗試突破現有無機保護膜的極限。
    研究首先以磁控濺鍍之方式製備不同週期厚度之氮化鉻鋁矽/氮化鎢多層薄膜,藉由穿透式電子顯微鏡之高解析模式及暗場影像之輔助,可驗證此多層結構之超晶格特性。緻密的微結構及大量介面引入造成的強化效應使得此多層薄膜展現出極為優異的機械特性。當週期厚度控制為8奈米時,膜之最高硬度可達41 GPa。經過磨耗測試後,不若單層薄膜易於崩解,氮化鉻鋁矽/氮化鎢多層薄膜仍舊維持其奈米層狀結構,並無直接穿透之裂痕產生,惟膜之厚度稍被削薄。
    在氮化鈦鋁/氮化矽之多層薄膜,由電子顯微鏡技術可揭露氮化矽之厚度對多層薄膜織構及微結構之影響。當氮化矽厚度較薄時,其結構以結晶之介穩態存在,與氮化鈦鋁所形成之契合介面可有效地提升多層膜之硬度及硬度/楊氏係數之比率。氮化矽厚度增至1奈米時,其非晶特性阻礙了超晶格之形成,然而此細晶結構展現了極其出色的抗塑性變形能力。故可依氮化矽之厚度提出兩種截然不同之多層膜抗磨耗機制。此外,當氮化矽為非晶態時可阻斷柱狀晶之成長,此緻密結構同時亦阻斷了腐蝕性離子藉由晶界擴散至基材的通道,進而提升抗腐蝕之表現。
    考量鍍膜結構由三維之奈米多層薄膜轉變為二維之奈米複晶薄膜,藉特殊之電漿輔助磁控濺鍍系統可製備出不同矽與碳含量之氮化鈦矽碳厚膜,其晶粒尺寸約莫為10奈米,此種熱力學驅動之相分離展現出不錯之硬度表現。藉由精準之製程參數控制與場發射電子微探儀分析,可在此厚膜中調控出一明顯之成分、相及結構梯度,故可同時在厚膜中達到高硬度及高壓縮性之要求。外硬內韌之特性亦符合大自然界中生物材料最理想之鎧甲設計,此氮化鈦矽碳厚膜亦展現了絕佳之抗磨耗性。
    將眼光自實驗室開展至大自然,可發現鮑魚殼層,乃由90 %碳酸鈣與10 %有機質組成之磚形微結構,其韌性可達碳酸鈣之數千倍,而有機層與無機層界面及各種微奈米強化機制於整體機械性質表現至關重要。利用反應式磁控濺鍍與脈衝雷射蒸鍍組成之複合系統可製備出一新穎之有機/無機多層薄膜,其週期厚度對多層膜之機械性質的影響因素亦可有系統地探討,並以微結構之觀點解釋此超韌薄膜之形成原因。
    最後,本研究利用奈米壓痕及奈米刮痕測試以評估一首見之仿生二硼化鈦/鋯銅鎳鋁多層薄膜之強化特性,以具有大幅度週期性變化之楊氏係數的材料系統做為新穎之薄膜設計,證實於高楊氏係數之硬質陶瓷薄膜中嵌入金屬玻璃薄膜可有效地提升多層膜之本質機械特性,尤其是對破裂的抵抗程度。週期厚度為40奈米之多層薄膜展現了最佳的表現,肇因於非晶與結晶層之個別奈米尺度特性,以及強而有力的非晶/結晶介面,電子顯微鏡分析進一步地驗證此特殊系統之強化機制。


    Contents Contents I List of Table IV Figures Caption V Abstract XII Chapter 1 Introduction 1 1.1 Background 1 1.2 Quest for Multi-functional Coatings 2 1.3 Motivation and Objectives 4 1.4 Thesis Overview 5 Chapter 2 Literature Review 9 2.1 Concept of Surface Engineering 9 2.2 Sputtering Technique 10 2.2.1 Sputtering 10 2.2.2 Magnetron Sputtering 11 2.2.3. Plasma Enhanced Magnetron Sputtering (PEMS) Technique 12 2.3 Pulsed Laser Deposition (PLD) 13 2.3.1 Formation of Polymer Films by PLD Technique 14 2.4 Review of Nitride Based Hard Coatings 15 2.4.1 Binary TiN and CrN Coatings 16 2.4.2 Ternary TiAlN and CrAlN Coatings 17 2.4.3 Multi-component Nitride Coatings 19 2.4.4 Nanocomposite Coatings 20 2.4.5 Multilayer Coatings 22 2.4.5.1 Strengthening Mechanism of Multilayers 22 2.4.5.1.1 Shear Modulus Difference Hardening 23 2.4.5.1.2 Strain Field Strengthening 24 2.4.5.1.3 Hall-Petch Relationship Strengthening 25 2.4.5.1.4 Epitaxial Stabilization Effect 26 2.5 The Anti-corrosion and Tribological Characteristics of Multilayer Coatings 27 2.5.1 Anti-corrosion Behavior 27 2.5.2 Tribological Behavior 28 2.6 Review of Metallic Glass 30 2.6.1 Mechanical Characteristics of Metallic Glass 31 2.6.2 Thin Film Metallic Glass (TFMG) 32 2.7 Review of Natural and Bio-inspired Armors 33 2.7.1 Natural Armors 35 2.7.1.1 Mollusk Shells 36 2.7.1.2 Abalone-inspired Multilayer Thin Films 38 2.8 Properties Evaluation and Characterizations 40 2.8.1 Nanoindentation Method 40 2.8.2 Nano-scratch Method 42 2.8.3 Transmission Electron Microscopy (TEM) 42 2.8.3.1 Electron Diffraction 43 Chapter 3 Experimental Procedure 75 3.1 Sample Preparations 75 3.1.1 Grinding and Polishing of Substrates 75 3.1.2 Ultrasonic Cleaning 75 3.2 Sputtering Fabrication 76 3.1.1 Deposition of CrAlSiN/W2N Multilayer Coatings 76 3.1.2 Deposition of TiAlN/SiNx Multilayer Coatings 76 3.1.3 Deposition of ZrO2/Polyimide Multilayer Coatings 77 3.1.4 Deposition of TiB2/ZrCuNiAl Multilayer Coatings 78 3.1.5 Deposition of TiSiCN and TiAlVSiCN Nanocomposite Coatings 78 3.3 Measurements and Analysis 79 3.3.1 Composition Analysis 79 3.3.2 Phase Identification 79 3.3.3 Hardness and Elastic Modulus Evaluation 80 3.3.4 Evaluation of Adhesion Strength and Toughness 80 3.3.5 Evaluation of Fracture Toughness 81 3.3.6 Evaluation of Wear Resistance 82 3.3.7 Electrochemical Corrosion Tests 82 3.3.8 Surface Characterization 83 3.3.9 Microstructural Analysis 83 Chapter 4 Results and Discussion 88 4.1 Bilayer Periods Dependence on Mechanical Tunability in CrAlSiN/W2N Superlattice Coatings 88 4.1.1 Monolayer and Multilayer Coatings with Different Total Thickness 88 4.1.2 Cross-sectional Microstructure of Multilayer Coatings 90 4.1.3 Hardness Evolution and Tribological Characteristics of Multilayer Coatings 92 4.2 Microstructure Control in TiAlN/SiNx Multilayer Coatings with Appropriate Thickness Ratios for the Improvement of Mechanical and Anti-corrosion Characteristics 107 4.2.1 Texture and Microstructure in Multilayer Coatings 107 4.2.2 Mechanical and Wear Properties of Coatings 111 4.2.3 Corrosion Characteristics of Coatings 115 4.3 A Bio-inspired Approach: Composition Gradient in Thick Nanocomposite Coatings Using Plasma Enhanced Magnetron Sputtering for Mechanical Strengthening 132 4.3.1 Microstructure and Gradient Compositional Characteristic in Thick TiSiCN Films 132 4.3.2 Gradient Mechanical Characteristics in Thick TiSiCN Films 135 4.4 Fabrication, Microstructure and Mechanical Characteristics of Bio-inspired Organic/Inorganic Multilayer Coatings Using a Hybrid Pulsed Laser Deposition/Sputtering Technique 149 4.4.1 Fabrication and Microstructure of Coatings 149 4.4.2 Enhancement of Fracture Toughness in Multilayer Coatings 151 4.5 Incorporation of a Hard Ceramic TiB2 into Thin Film Metallic Glass for Constructing the Super-tough Bio-inspired Multilayer Coatings with Varying Elastic Modulus 161 Chapter 5 Conclusions 185 References 188 個人簡歷 204 自傳 206 Publication Lists 208 International Conference Presentation 211

    1. R. Melley, P. Wissner, “The real costs of lubrication”, 99th AGM-CIM, Canada, 1997
    2. M.G. Fontana, “Corrosion engineering”, 3rd ed., McGraw-Hill, New York, 1986.
    3. R.W. Hertzberg, “Deformation and fracture mechanics of engineering materials”, 3rd ed., Wiley, New York, 1989.
    4. P.H. Mayrhofer, C. Mitterer, L. Hultman, H. Clemens, “Microstructural design of hard coatings”, Prog. Mater. Sci. 51 (2006) 1032.
    5. I. Milosev, H.H. Strehblow, B. Navinsek, “Comparison of TiN, ZrN and CrN hard nitride coatings: Electrochemical and thermal oxidation”, Thin Solid Films 303 (1997) 246.
    6. L. Hultman, “Thermal stability of nitride thin films”, Vacuum 57 (2000) 1.
    7. S. PalDey, S.C. Deevi, “Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review”, Mat. Sci. Eng. A-Struct. A342 (2003) 58.
    8. H.A. Jehn, “Multicomponent and multiphase hard coatings for tribological applications”, Surf. Coat. Technol. 131 (2000) 433.
    9. C.H. Lin, J.G. Duh, J.W. Yeh, “Multi-component nitride coatings derived from Ti–Al–Cr–Si–V target in RF magnetron sputter”, Surf. Coat. Technol. 201 (2007) 6304.
    10. H. Lind, R. Forsen, B. Alling, N. Ghafoor, F. Tasnadi, M.P. Johansson, I.A. Abrikosov, M. Oden, “Improving thermal stability of hard coating films via a concept of multicomponent alloying”, Appl. Phys. Lett. 99 (2011) 091903.
    11. S. Veprek, R.F. Zhang, M.G.J. Veprek-Heijman, S.H. Sheng, A. S. Argon, “Superhard nanocomposites: Origin of hardness enhancement, properties and applications”, Surf. Coat. Technol. 204 (2010) 1898.
    12. J.B. Kim, B.S. Jun, S.M. Lee, “Improvement of capacity and cyclability of Fe/Si multilayer thin film anodes for lithium rechargeable batteries”, Electrochim. Acta 50 (2005) 3390.
    13. J.P. Chu, Y.C. Wang, “Sputter-deposited Cu/Cu(O) multilayers exhibiting enhanced strength and tunable modulus”, Acta Mater. 58 (2010) 6371.
    14. S.A. Barnett, A. Madan, “Hardness and stability of metal–nitride nanoscale multilayers”, Scr. Mater. 50 (2004) 739.
    15. W.D. Sproul, “Reactive sputter deposition of polycrystalline nitride and oxide superlattice coatings”, Surf. Coat. Technol. 86 (1996) 170.
    16. M. Stueber, H. Holleck, H. Leiste, K. Seemann, S. Ulrich, C. Ziebert, “Concepts for the design of advanced nanoscale PVD multilayer protective thin films”, J. Alloy. Compd. 483 (2009) 321.
    17. D.G. Kim, T.Y. Seong, Y.J. Baik, “Effects of annealing on the microstructures and mechanical properties of TiN/AlN nano-multilayer films prepared by ion-beam assisted deposition”, Surf. Coat. Technol. 153 (2002) 79.
    18. Y.Z. Tsai, J.G. Duh, “Thermal stability and microstructure characterization of CrN/WN multilayer coatings fabricated by ion-beam assisted deposition”, Surf. Coat. Technol. 200 (2006) 1683.
    19. P.C. Yashar, W.D. Sproul, “Nanometer scale multilayered hard coatings”, Vacuum 55 (1999) 179.
    20. J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, C. Rullyani, “Thin film metallic glasses: Unique properties and potential applications”, Thin Solid Films 520 (2012) 5097.
    21. P.S. Chen, H.W. Chen, J.G. Duh, J.W. Lee, J.S.C. Jang, “Characterization of mechanical properties and adhesion of Ta–Zr–Cu–Al–Ag thin film metallic glasses”, Surf. Coat. Technol. 231 (2013) 332.
    22. H.S. Chou, J.C. Huang, L.W. Chang, “Mechanical properties of ZrCuTi thin film metallic glass with high content of immiscible tantalum”, Surf. Coat. Technol. 205 (2010) 587.
    23. P.Y. Chen, J. McKittrick, M.A. Meyers, “Biological materials: Functional adaptations and bioinspired designs”, Prog. Mater. Sci. 57 (2012) 1492.
    24. K. Liu, L. Jiang, “Bio-inspired design of multiscale structures for function integration”, Nano Today 6 (2011) 155.
    25. C. Ortiz, M.C. Boyce, “Bioinspired structural materials”, Science 319 (2008) 1053.
    26. H.D. Espinosa, J.E. Rim, F. Barthelat, M.J. Buehler, “Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials”, Prog. Mater. Sci. 54 (2009) 1059.
    27. P. Lipowsky, Z. Burghard, L. Jeurgens, J. Bill, F. Aldinger, “Laminates of zinc oxide and poly(amino acid) layers with enhanced mechanical performance”, Nanotechnology 18 (2007) 345707.
    28. L.J. Bonderer, A.R. Studart, L.J. Gauckler, “Bioinspired design and assembly of platelet reinforced polymer films”, Science 319 (2008) 1069.
    29. A.R. Studart, “Towards high-performance bioinspired composites”, Adv. Mater. 24 (2012) 5024.
    30. J. Wang, Q. Cheng, Z. Tang, “Layered nanocomposites inspired by the structure and mechanical properties of nacre”, Chem. Soc. Rev. 41 (2012) 1111.
    31. S. Veprek, M.G.J. Veprek-Heijman, “Industrial applications of superhard nanocomposite coatings”, Surf. Coat. Technol. 202 (2008) 5063.
    32. S. Veprek, “Recent search for new superhard materials: Go nano!”, J. Vac. Sci. Technol. A 31 (2013) 050822.
    33. H. Holleck, V. Schier, “Multilayer PVD coatings for wear protection”, Surf. Coat. Technol. 76 (1995) 587.
    34. B. Bhushan, “Overview of coating materials, surface treatments and screening techniques for tribological applications Part I: Coating materials and surface treatments”, Testing of Metallic and Inorganic Coatings (W.B. Harding and G.A. DiBari, eds.), special Publication STP 947, 289-309, ASTM, Philadelphia, PA. USA, 1987
    35. Y. Chiba, T. Omura, H. Ichimura, “Wear resistance of arc ion-plated chromium nitride coatings”, J. Mater. Res. 8 (1993) 1109.
    36. D.S. Rickerby, A. Matthews, “Advanced surface coatings: a handbook of surface engineering”, Glasgow, Blackie, 1991
    37. R. Behrisch Ed., “Sputtering by particle bombardment”, Applied Physics, Berlin, Springer, 1981
    38. P.D. Toensend, J.C. Kelly, “Ion implantation: Sputtering and their applications”, Academic Press, 1976
    39. M. Ohring Ed., “The materials science of thin films”, Academic Press, London, UK, 1992
    40. J. Matossiana, R. Wei, J. Vajo, G. Hunt, M. Gardos, G. Chambers, L. Soucy, D. Oliver, L. Jay, C.M. Taylor, G. Alderson, R. Komanduri, A. Perry, “Plasma-enhanced, magnetron-sputtered deposition (PMD) of materials”, Surf. Coat. Technol. 108 (1998) 496.
    41. R. Wei, J.J. Vajo, J.N. Matossiana, M.N. Gardos, “Aspects of plasma-enhanced magnetron-sputtered deposition of hard coatings on cutting tools”, Surf. Coat. Technol. 158 (2002) 465.
    42. R. Wei, E. Langa, C. Rincon, J.H. Arps, “Deposition of thick nitrides and carbonitrides for sand erosion protections”, Surf. Coat. Technol. 201 (2006) 4453.
    43. H. Xu, X. Nie, R. Wei, “Tribological behavior of a TiSiCN coating tested in air and coolant”, Surf. Coat. Technol. 201 (2006) 4236.
    44. R. Wei, “Plasma enhanced magnetron sputter deposition of Ti–Si–C–N based nanocomposite coatings”, Surf. Coat. Technol. 203 (2008) 538.
    45. R. Wei, C. Rincon, E. Langa, Q. Yang, “Microstructure and tribological performance of nanocomposite Ti–Si–C–N coatings deposited using hexamethyldisilazane precursor”, J. Vac. Sci. Technol. A 28 (2010) 1126.
    46. D.H. Lowndes, D.B. Geohegan, A.A. Puretzky, D.P. Norton, C.M. Rouleau, “Synthesis of novel thin-film materials by pulsed laser deposition”, Science 273 (1996) 898.
    47. M.N.R. Ashfold, F. Claeyssens, G.M. Fuge, S.J. Henley, “Pulsed laser ablation and deposition of thin films”, Chem. Soc. Rev. 33 (2004) 23.
    48. P.R. Willmott, J.R. Huber, “Pulsed laser vaporization and deposition”, Rev. Mod. Phys., 72 (2000) 315.
    49. H.G. Hansen, T.E. Robitaille, “Formation of polymer films by pulsed laser evaporation”, Appl. Phys. Lett. 52 (1988) 58.
    50. Y. Tsuboi, H. Adachi, E. Yamamoto, A. Itaya, “Pulsed laser deposition of poly(tetrafluoroethylene), poly(methylmethacrylate), and polycarbonate utilizing anthracene-photosensitized ablation”, Jpn. J. Appl. Phys. 41 (2002) 885.
    51. G.B. Blanchet, C.R. Fincher, “Thin film fabrication by laser ablation of addition polymers”, Adv. Mater. 6 (1994) 881.
    52. B. Losekrug, A. Meschede, H.U. Krebs, “Pulsed laser deposition of smooth poly(methyl methacrylate) films at 248 nm”, Appl. Surf. Sci. 254 (2007) 1312.
    53. B. Fazio, S. Trusso, E. Fazio, F. Neri, “Structural characterization of pulsed laser deposited poly(methylmethacrylate) thin films”, J. Raman Spectrosc. 39 (2008) 182.
    54. H. Holleck, V. Schier, “Multilayer PVD coatings for wear protection”, Surf. Coat. Technol. 76 (1995) 328.
    55. H. Holleck, “Material selection for hard coatings”, J. Vac. Sci. Technol. A 4 (1986) 2661.
    56. M. Bin-Sudin, A. Leyland, A.S. James, A. Matthews, J. Housden, B. Garside, “XPS in the study of high-temperature oxidation of CrN and TiN hard coatings”, Surf. Coat. Technol. 74 (1995) 897.
    57. H. Ichimura, A. Kawana, “High temperature oxidation of ion-plated CrN films”, J. Mater. Res. 9 (1994) 151.
    58. J.N. Tu, J.G. Duh, S.Y. Tsai, “Morphology, mechanical properties, and oxidation behavior of reactively sputtered Cr–N films”, Surf. Coat. Technol. 133 (2000) 181.
    59. H.L. Bai, Z.J. He, W.B. Mi, P. Wu, Z.Q. Li, E.Y. Jiang, “Dual facing target sputtered amorphous CoMoN/CN compound soft X-ray multilayer: structures and thermal stability”, Appl. Phys. A 77 (2003) 533.
    60. H. Ichimura, A. Kawana, “High temperature oxidation of ion-plated TiN and TiAlN films”, J. Mater. Res. 8 (1996) 1093.
    61. Y. Li, L. Qu, F. Wang, “The electrochemical corrosion behavior of TiN and (Ti,Al)N coatings in acid and salt solution”, Corrosion Sci. 45 (2003) 1367.
    62. “Phase Equilibria Diagrams: Phase Diagrams for Ceramists: Vol.10. Borides, Carbides, and Nitrides”, A.E. McHale (Ed.), The American Ceramic Society, Westerville, 1994
    63. L. Cunha, M. Andritschky, L. Rebouta, R. Silva, “Corrosion of TiN, (TiAl)N and CrN hard coatings produced by magnetron sputtering”, Thin Solid Films 317 (1998) 351.
    64. S. Yang, K.E. Cooke, X. Li, F. McIntosh, D.G. Teer, “CrN-based wear resistant hard coatings for machining and forming tools”, J. Phys. D: Appl. Phys. 42 (2009) 104001.
    65. M.C. Kang, I.W. Park, K.H. Kim, “Performance evaluation of AIP-TiAlN coated tool for high speed machinings”, Surf. Coat. Technol. 163-164 (2003) 734.
    66. S.D. Kim, I.S. Hwang, J.K. Rhee, T.H. Cha, H.D. Kim, “Oxidation resistance of sputtered Ti1-xAlxN films for complementary metal oxide semiconductor storage node electrode barriers”, Electrochem. Solid State Lett. 4 (2001) G7.
    67. M. Hock, E. Schaffer, W. Doll, G. Kleer, “Composite coating materials for the moulding of diffractive and refractive optical components of inorganic glasses”, Surf. Coat. Technol. 163 (2003) 689.
    68. A. Horling, L. Hultman, M. Oden, J. Sjolen, L. Karlsson, “Mechanical properties and machining performance of Ti1−xAlxN-coated cutting tools”, Surf. Coat. Technol. 191 (2005) 384.
    69. G.T. Liu, J.G. Duh, K.H. Chung, J.H. Wang, “Mechanical characteristics and corrosion behavior of (Ti,Al)N coatings on dental alloys”, Surf. Coat. Technol. 200 (2005) 2100.
    70. C.T. Huang, J.G. Duh, “Deposition of (Ti,A1)N films on A2 tool steel by reactive r.f. magnetron sputtering”, Surf. Coat. Technol. 71 (1995) 259.
    71. B. Alling, M. Oden, L. Hultman, I.A. Abrikosov, “Pressure enhancement of the isostructural cubic decomposition in Ti1−xAlxN”, Appl. Phys. Lett. 95 (2009) 181906.
    72. Y. Makino, “Prediction of phase change in pseudobinary transition metal aluminum nitrides by band parameters method”, Surf. Coat. Technol. 193 (2005) 185.
    73. A.E. Reiter, V.H. Derflinger, B. Hanselmann, T. Bachmann, B. Sartory, “Investigation of the properties of Al1-xCrxN coatings prepared by cathodic arc evaporation”, Surf. Coat. Technol. 200 (2005) 2114.
    74. K. Bobzin, E. Lugscheider, R. Nickel, N. Bagcivan, A. Kramer, “Wear behavior of Cr1−xAlxN PVD-coatings in dry running conditions”, Wear 263 (2007) 1274.
    75. J. Lin, B. Mishra, J.J. Moore, W.D. Sproul, “A study of the oxidation behavior of CrN and CrAlN thin films in air using DSC and TGA analyses”, Surf. Coat. Technol. 202 (2008) 3272.
    76. A.E. Reiter, C. Mitterer, B. Sartory, “Oxidation of arc-evaporated Al1−xCrxN coatings”, J. Vac. Sci. Technol. A 25(4) (2007) 771.
    77. S. Veprek, “New development in superhard coatings: the superhard nanocrystalline-amorphous composites”, Thin Solid Films 317 (1998) 449.
    78. S. Veprek, M.G.J. Veprek-Heijman, P. Karvankova, J. Prochazka, “Different approaches to superhard coatings and nanocomposites”, Thin Solid Films 476 (2005) 1.
    79. R. Hauert, J. Patscheider, “From alloying to Nanocompositee-improved performance of hard coatings”, Adv. Eng. Mater. 5 (2000) 247.
    80. S. Veprek, A.S. Argon, “Toward the understanding of mechanical properties of super- and ultra-hard nanocomposites”, J. Vac. Sci. Technol. B 20 (2002) 650.
    81. Z.J. Liu, C.H. Zhang, Y.G. Shen, Y.W. Mai, “Monte Carlo simulation of nanocrystalline TiN/amorphous SiNx composite films”, J. Appl. Phys. 95 (2004) 758.
    82. H.W. Chen, Y.C. Chan, J.W. Lee, J.G. Duh, “Oxidation resistance of nanocomposite CrAlSiN under long-time heat treatment”, Surf. Coat. Technol. 206 (2011) 1571.
    83. J.S. Koehler, “Attempt to design a strong solid”, Phys. Rev. B 2 (1970) 547.
    84. S.L. Lehoczky, “Retardation of dislocation generation and motion in thin-layered metal laminates”, Phys. Rev. Lett. 41 (1978) 1814.
    85. X. Chu, S.A. Barnett, “Model of superlattice yield stress and hardness enhancements”, J. Appl. Phys. 77(9) (1995) 4403.
    86. M. Kato, T. Mori, L.H. Schwartz, “Hardening by spinodal modulated structure”, Acta Metall. 28 (1980) 285.
    87. M. Shinn, L. Hultman, S.A. Barnett, “Growth, structure, and microhardness of epitaxial TiN/NbN superlattices”, J. Mater. Res. 7 (1992) 901.
    88. L. Hultman, “Synthesis, structure, and properties of superhard superlattice coatings”, A. Cavaleiro, J.Th.M. De Hosson (Eds.), Nanostructured Coatings, Springer, New York, 2006
    89. P.M. Anderson, C. Li, “Hall-Petch relations for multilayered materials”, Nanostruct. Mater. 5(3) (1995) 349.
    90. P.M. Anderson, T. Foecke, P.M. Hazzledine, “Dislocation-based deformation mechanisms in metallic nanolaminates”, MRS Bull. 24(2) (1999) 27.
    91. H. Soderberg, M. Oden, L. Hultman, “Nanostructure formation during deposition of TiN/SiNx nanomultilayer films by reactive dual magnetron sputtering”, J. Appl. Phys. 97 (2005) 114327.
    92. A. Madan, I.W. Kim, S.C. Cheng, P. Yashar, V.P. Dravid, S.A. Barnett, “Stabilization of cubic AlN in epitaxial AlN/TiN superlattices”, Phys. Rev. Lett. 78 (1978) 1743.
    93. I.W. Kim, Q. Li, L.D. Marks, S.A. Barnett, “Critical thickness for transformation of epitaxially stabilized cubic AlN in superlattices”, Appl. Phys. Lett. 78 (2001) 892.
    94. Y.Y. Wang, M.S. Wong, W.J. Chia, J. Rechner, W.D. Sproul, “Synthesis and characterization of highly textured polycrystalline AlN/TiN superlattice coatings”, J. Vac. Sci. Technol. A 16 (1998) 3341.
    95. M. Setoyama, A. Nakayama, M. Tanaka, N. Kitagawa, T. Nomura, “Formation of cubic-AIN in TiN/AIN superlattice”, Surf. Coat. Technol. 86-87 (1996) 225.
    96. M.S. Wong, G.Y. Hsiao, S.Y. Yang, “Preparation and characterization of AlN/ZrN and AlN/TiN nanolaminate coatings”, Surf. Coat. Technol. 133-134 (2000) 160.
    97. S.K. Tien, J.G. Duh, “Effect of heat treatment on mechanical properties and microstructure of CrN/AlN multilayer coatings”, Thin Solid Films 494 (2006) 173.
    98. A. Vyas, K.Y. Li, Y.G. Shen, “Influence of deposition conditions on mechanical and tribological properties of nanostructured TiN/CNx multilayer films”, Surf. Coat. Technol. 203 (2009) 967.
    99. M. Cao, D.J. Li, X.Y. Deng, X. Sun, “Synthesis of nanoscale CNx/TiAlN multilayered coatings by ion-beam-assisted deposition”, J. Vac. Sci. Technol. A 26(5) (2008) 1314.
    100. Y.H. Chen, K.W. Lee, W.A. Chiou, Y.W. Chung, L.M. Keer, “Synthesis and structure of smooth, superhard TiN/SiNx multilayer coatings with an equiaxed microstructure”, Surf. Coat. Technol. 146-147 (2001) 209.
    101. H. Soderberg, M. Oden, T. Larsson, L. Hultman, J.M. Molina-Aldareguia, “Epitaxial stabilization of cubic-SiNx in TiN/SiNx multilayers”, Appl. Phys. Lett. 88 (2006) 191902.
    102. Y. Dong, W. Zhao, J. Yue, G. Li, “Crystallization of Si3N4 layers and its influences on the microstructure and mechanical properties of ZrN/Si3N4 nanomultilayers”, Appl. Phys. Lett. 89 (2006) 121916.
    103. C. Liu, Q. Bi, A. Leyland, A. Matthews, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part I. Establishment of equivalent circuits for EIS data modelling”, Corros. Sci. 45 (2003) 1243.
    104. H. Uchida, S. Inoue, K. Koterazawa, “Electrochemical evaluation of pinhole defects in TiN films prepared by r.f. reactive sputtering”, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 234-236 (1997) 649.
    105. H.C. Barshilia, B. Deepthi, A.S. Arun Prabhu, K.S. Rajam, “Superhard nanocomposite coatings of TiN/Si3N4 prepared by reactive direct current unbalanced magnetron sputtering”, Surf. Coat. Technol. 201 (2006) 329.
    106. C.H. Lin, J.G. Duh, “Electrochemical impedance spectroscopy (EIS) study on corrosion performance of CrAlSiN coated steels in 3.5 wt.% NaCl solution”, Surf. Coat. Technol. 204 (2009) 784.
    107. V.K.W. Grips, H.C. Barshilia, V.E. Selvia, Kalavati, K.S. Rajam, “Electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive direct current magnetron sputtering”, Thin Solid Films 514 (2006) 204.
    108. V.K.W. Grips, V.E. Selvia, H.C. Barshilia, K.S. Rajam, “Effect of electroless nickel interlayer on the electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive dc magnetron sputtering”, Electrochim. Acta 51 (2006) 3461.
    109. H.C. Barshilia, M.S. Prakash, A. Poojari, K.S. Rajam, “Corrosion behavior of nanolayered TiN/NbN multilayer coatings prepared by reactive direct current magnetron sputtering process”, Thin Solid Films 460 (2004) 133.
    110. C. Liu, Q. Bi, H. Ziegele, A. Leyland, A. Matthews, “Structure and corrosion properties of PVD Cr-N coatings”, J. Vac. Sci. Technol. A 20 (2002) 772.
    111. H.C. Barshilia, B. Deepthi, K.S. Rajam, “Deposition and characterization of TiAlN/Si3N4 superhard nanocomposite coatings prepared by reactive direct current unbalanced magnetron sputtering”, Vacuum 81 (2006) 479.
    112. C. Mendibide, J. Fontaine, P. Steyer, C. Esnouf, “Dry sliding wear model of nanometer scale multilayered TiN/CrN PVD hard coatings”, Tribol. Lett. 17 (2004) 779.
    113. A. Leyland, A. Matthews, “On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour”, Wear 246 (2000) 1.
    114. E. Bemporad, C. Pecchio, S. De Rossi, F. Carassiti, “Characterisation and wear properties of industrially produced nanoscaled CrN/NbN multilayer coating”, Surf. Coat. Technol. 188-189 (2004) 319.
    115. K. Zhang, M. Wen, Q.N. Meng, Y. Zeng, C.Q. Hu, C. Liu, W.T. Zheng, “Structure, mechanical property, and tribological behavior of c-NbN/CNx multilayers grown by magnetron sputtering”, Surf. Coat. Technol. 206 (2012) 4040.
    116. Y.Z. Tsai, J.G. Duh, “Tribological behavior of CrAlSiN/W2N multilayer coatings deposited by DC magnetron sputtering”, Thin Solid Films 518 (2010) 7523.
    117. W.L. Johnson, “Bulk glass-forming metallic alloys: science and technology”, MRS Bull. 24 (1999) 42.
    118. G. Kumar, H.X. Tang, J. Schroers, “Nanomoulding with amorphous metals”, Nature 457 (2009) 868.
    119. C.T. Pan, T.T. Wu, M.F. Chen, Y.C. Chang, C.J. Lee, and J.C. Huang, “Hot embossing of micro-lens array on bulk metallic glass”, Sens. Actuators 141 (2008) 422.
    120. M. Ishida, H. Takeda, N. Nishiyama, K. Kita, Y. Shimizu, Y. Saotome, A. Inoue, “Wear resistivity of super-precision microgear made of Ni-based metallic glass”, Mater. Sci. Eng. A 449 (2007) 149.
    121. J.J. He, N. Li, N. Tang, X.Y. Wang, C. Zhang, L. Liu, “The precision replication of a microchannel mould by hot-embossing a Zr-based bulk metallic glass”, Intermetallics 21 (2012) 50.
    122. A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Mater. 48 (2000) 279.
    123. Y.Q. Cheng, E. Ma, “Atomic-level structure and structure–property relationship in metallic glasses”, Prog. Mater. Sci. 56 (2011) 379.
    124. A. Inoue, “Bulk Amorphous Alloys Practical Characteristics and Applications Institute for Material Research”, Tohoku University, Japan, 1999
    125. W.L. Johnson, K. Samwer, “A universal criterion for plastic yielding of metallic glasses with a (T/T-g)(2/3) temperature dependence”, Phys. Rev. Lett. 95 (2005) 195501.
    126. B. Yang, C.T. Liu, T.G. Nieh, “Unified equation for the strength of bulk metallic glasses”, Appl. Phys. Lett. 88 (2006) 221911.
    127. S.G. Mayr, “Relaxation kinetics and mechanical stability of metallic glasses and supercooled melts”, Phys. Rev. B 79 (2009) 060201.
    128. Y.H. Liu, C.T. Liu, W.H. Wang, A. Inoue, T. Sakurai, M.W. Chen, “Thermodynamic Origins of Shear Band Formation and the Universal Scaling Law of Metallic Glass Strength”, Phys. Rev. Lett. 103 (2009) 065504.
    129. C. Suryanarayana, A. Inoue, “Bulk Metallic Glasses”, CRC, Florida, 2010
    130. M.C. Liu, C.J. Lee, Y.H. Lai, J.C. Huang, “Microscale deformation behavior of amorphous/nanocrystalline multilayered pillars”, Thin Solid Films 518 (2010) 7295.
    131. C.J. Lee, H.K. Lin, J.C. Huang, S.Y. Kuan, “Tension behavior of free-standing amorphous film and amorphous–crystalline nanolaminates in submicron scale”, Scripta Mater. 65 (2011) 695.
    132. J.Y. Kim, D.C. Jang, J.R. Greer, “Nanolaminates utilizing size-dependent homogeneous plasticity of metallic glasses”, Adv. Funct. Mater. 21 (2011) 4550.
    133. C.A. Volkert, A. Donohue, F. Spaepen, “Effect of sample size on deformation in amorphous metals”, J. Appl. Phys. 103 (2008) 083539.
    134. A. Donohue, F. Spaepen, R.G. Hoagland, A. Misra, “Suppression of the shear band instability during plastic flow of nanometerscale confined metallic glasses”, Appl. Phys. Lett. 91 (2007) 241905.
    135. Y.M. Wang, J. Li, A.V. Hamza, J.T.W. Barbee, “Ductile crystalline–amorphous nanolaminates”, Prog. Natl. Acad. Sci. USA 104 (2007) 11155.
    136. M.F. Ashby, L.J. Gibson, U. Wegst, R. Olive, “The mechanical properties of natural materials. I. Material property charts”, Proc. Math. Phys. Sci. 450 (1995) 123.
    137. P. Fratzl, H.S. Gupta, E.P. Paschalis, P. Roschger, “Structure and mechanical quality of the collagen–mineral nano-composite in bone”, J. Mater. Chem. 14 (2004) 2115.
    138. R.O. Ritchie, “The conflicts between strength and toughness”, Nat. Mater. 10 (2011) 817.
    139. P.Y. Chen, A.Y.M. Lin, Y.S. Lin, Y. Seki, A.G. Stokes, J. Peyras, E.A. Olevsky, M.A. Meyers, J. McKittrick, “Structure and mechanical properties of selectednbiological materials”, J. Mech. Behav. Biomed. Mater. 1 (2008) 208.
    140. R. Menig, M.H. Meyers, M.A. Meyers, K.S. Vecchio, “Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells”, Acta Mater. 48 (2000) 2383.
    141. M.A. Meyers, P.Y. Chen, A.Y.M. Lin, Y. Seki, “Biological materials: Structure and mechanical properties”, Prog. Mater. Sci. 53 (2008) 1.
    142. R.O. Ritchie, “The conflicts between strength and toughness”, Nat. Mater. 10 (2011) 817.
    143. R. Chen, C. Wang, Y. Huang, H. Le, “An efficient biomimetic process for fabrication of artificial nacre with ordered-nanostructure”, Mater. Sci. Eng. C 28 (2008) 218.
    144. Z. Burghard, L. Zini, V. Srot, P. Bellina, P.A. van Aken, J. Bill, “Toughening through nature-adapted nanoscale design”, Nano Lett. 9 (2009) 4103.
    145. P. Fratzl, H.S. Gupta, F.D. Fischer, O. Kolednik, “Hindered crack propagation in materials with periodically varying Young’s modulus- Lessons from biological materials”, Adv. Mater. 19 (2007) 2657.
    146. O. Kolednik, J. Predan, F.D. Fischer, P. Fratzl, “Bioinspired design criteria for damage-resistant materials with periodically varying microstructure”, Adv. Funct. Mater. 21 (2011) 3634.
    147. K.E. Tanner, “Small but extremely tough”, Science 336 (2012) 1237.
    148. C.M. Cheng, Y.T. Cheng, “On the initial unloading slope in indentation of elastic-plastic solids by an indenter with an axisymmetric smooth profile”, Appl. Phys. Lett. 71 (1997) 2623.
    149. W.C. Oliver, “Alternative technique for analyzing instrumented indentation data”, J. Mater. Res. 16 (2001) 3202.
    150. W.C. Oliver, G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, J. Matter. Res. 7 (1992) 1564.
    151. P.R. Chalker, S.J. Bull, D.S. Rickerby, “A review of the methods for the evaluation of coating-substrate adhesion”, Mater. Sci. Eng. A 140 (1991) 583.
    152. D.B. Williams, C.B. Carter, “Transmission Electron Microscopy”, 2nd ed. Plenum Press, New York, 2009
    153. J. Goldstein, D.E. Newbury, D.C. Joy, C.E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J.R. Michael, “Scanning Electron Microscopy and X-ray Microanalysis”, 3rd ed. Plenum Press, New York, 2003
    154. S. Zhang, X. Zhang, “Toughness evaluation of hard coatings and thin films”, Thin Solid Films 520 (2012) 2375.
    155. Z. Xia, W.A. Curtin, B.W. Sheldon, “A new method to evaluate the fracture toughness of thin films”, Acta Mater. 52 (2004) 3507..
    156. S. Ma, J. Prochazka, P. Karvankova, Q. Ma, X. Niu, X. Wang, D. Ma, K. Xu, S. Veprek, “Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si3N4 with TiN”, Surf. Coat. Technol. 194 (2005) 143.
    157. V.S. Sastri, “Corrosion Inhibitors-Principles and Applications”, Chichester, 1998.
    158. I. Petrov, P.B. Barna, L. Hultman, J.E. Greene, “Microstructural evolution during film growth”, J. Vac. Sci. Technol. A 21 (2003) S117.
    159. Y.Z. Tsai, J.G. Duh, “Enhanced hardness of CrAlSiN/W2N superlattice coatings deposited by direct current magnetron sputtering”, J. Mater. Res. 25 (2010) 2325.
    160. U. Helmersson, S. Todorova, S.A. Barnett, J.E. Sundgren, L.C. Markert, J.E. Greene, “Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness”, J. Appl. Phys. 62(2) (1987) 481.
    161. K. Zheng, P. Liu, W. Li, F. Ma, X. Liu, X. Chen, “Investigation on microstructure and properties of CrAlN/AlON nanomultilayers”, Appl. Surf. Sci. 257 (2011) 9583.
    162. T. Polcar, N.M.G. Parreira, A. Cavaleiro, “Tribological characterization of tungsten nitride coatings deposited by reactive magnetron sputtering”, Wear 262 (2007) 655.
    163. B.D. Cullity, S.R. Stock, “Elements of X-Ray Diffraction”, Englewood Cliffs, NJ, Prentice-Hall, 2001
    164. L. Hultman, J. Bareno, A. Flink, H. Soderberg, K. Larsson, V. Petrova, M. Oden, J.E. Greene, I. Petrov, “Interface structure in superhard TiN-SiN nanolaminates and nanocomposites: Film growth experiments and ab initio calculations”, Phys. Rev. B B75 (2007) 155437.
    165. Y. Kajikawa, S. Noda, H. Komiyama,“Comprehensive perspective on the mechanism of preferred orientation in reactive-sputter-deposited nitrides”, J. Vac. Sci. Technol. A 21 (2003) 1943.
    166. S.H. Tsai, J.G. Duh, “Microstructure and mechanical properties of CrAlN/SiNx nanostructure multilayered coatings”, Thin Solid Films 518 (2009) 1480.
    167. J. Lin, J.J. Moore, B. Mishra, M. Pinkas, W.D. Sproul, “The structure and mechanical and tribological properties of TiBCN nanocomposite coatings”, Acta Mater. 58 (2010) 1554.
    168. J. Takadoum, H. Houmid-Bennani, D. Mairey, “The wear characteristics of silicon nitride”, J. Eur. Ceram. Soc., 18 (1998) 553.
    169. M. Stern, A.L. Geary, “Electrochemical polarization .1. A theoretical analysis of the shape of polarization curves”, J. Electrochem. Soc., 104 (1957) 56.
    170. D.K. Merl, P. Panjan, M. Cekada, M. Macek, “The corrosion behavior of Cr-(C,N) PVD hard coatings deposited on various substrates”, Electrochim. Acta 49 (2004) 1527.
    171. C. Liu, Q. Bi, A. Matthews, “EIS comparison on corrosion performance of PVD TiN and CrN coated mild steel in 0.5 N NaCl aqueous solution”, Corros. Sci. 43 (2001) 1953.
    172. L. Cunha, M. Andritschky, L. Rebouta, K. Pischow, “Corrosion of CrN and TiAlN coatings in chloride-containing atmospheres”, Surf. Coat. Technol. 116 (1999) 1152.
    173. P. Jedrzejowski, J.E. Klemberg-Sapieha, L. Martinu, “Quaternary hard nanocomposite TiCxNy/SiCN coatings prepared by plasma enhanced chemical vapor deposition”, Thin Solid Films 466 (2004) 189.
    174. M. Dayan, M. Shengli, K. Xu, “Superhard nanocomposite Ti–Si–C–N coatings prepared by pulsed-d.c plasma enhanced CVD”, Surf. Coat. Technol. 200 (2005) 382.
    175. H.M. Lin, J.G. Duh, R. Wei, C. Rincon, J.W. Lee, “The effect of microstructure and composition on mechanical properties in thick-layered nanocomposite Ti–Si–C–N coatings”, Surf. Coat. Technol. 205 (2010) 1460.
    176. S. Veprek, S.G. Prilliman, S.M. Clark, “Elastic moduli of nc-TiN/a-Si3N4 nanocomposites: Compressible, yet superhard”, J. Phys. Chem. Solids 71 (2010) 1175.
    177. S. Zhang, D. Sun, Y. Fu, H. Du, “Toughness measurement of thin films: a critical review”, Surf. Coat. Technol. 198 (2005) 74.
    178. Z. Burghard, A. Tucic, L.P.H. Jeurgens, R.C. Hoffmann, J. Bill, F. Aldinger, “Nanomechanical properties of bioinspired organic–inorganic composite films”, Adv. Mater. 19 (2007) 970.
    179. S. Mann, “Molecular recognition of biomineralization”, Nature 332 (1988) 119.
    180. H. Gao, B. Ji, I.L. Jager, E. Arzt, P. Fratzl, “Materials become insensitive to flaws at nanoscale: Lessons from nature”, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 5597.
    181. J. Ye, S. Ulrich, K. Sell, H. Leiste, M. Stuber, H. Holleck, “Correlation between plasma particle fluxes, microstructure and properties of titanium diboride thin films”, Surf. Coat. Technol. 174-175 (2003) 959.
    182. E. Ke1esoglu, C. Mitterer, “Structure and properties of TiB2 based coatings prepared by unbalanced DC magnetron sputtering”, Surf. Coat. Technol. 98 (1998) 1483.
    183. F. Lv, S.P. Wen, R.L. Zong, F. Zeng, Y. Gao, F. Pan, “Nanoindentation study of amorphous-Co79Zr13Nb8/Cr multilayers”, Surf. Coat. Technol. 202 (2008) 3239.
    184. C.A. Schuh, T.C. Hufnagel, U. Ramamurty, “Overview No.144 - Mechanical behavior of amorphous alloys”, Acta Mater. 55 (2007) 4067.
    185. S.Y. Kuan, H.S. Chou, M.C. Liu, X.H. Liu, J.C. Huang, “Micromechanical response for the amorphous/amorphous nanolaminates”, Intermetallics 18 (2010) 2453.
    186. M. Berger, L. Karlsson, M. Larsson, S. Hogmark, “Low stress TiB2 coatings with improved tribological properties”, Thin Solid Films 401 (2001) 179.
    187. Y. Zhang, A.L. Greer, “Thickness of shear bands in metallic glasses”, Appl. Phys. Lett. 89 (2006) 071907.
    188. A. Misra, J.P. Hirth, R.G. Hoagland, “Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites”, Acta Mater. 53 (2005) 4817.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE