簡易檢索 / 詳目顯示

研究生: 陳佳賓
Chia-Pin Chen
論文名稱: 高介電係數材料氧化鉿與氧化鏑在金氧半電容器之物性和電性分析
The Physical and Electrical Properties of Metal (Al)-Oxide-Si Capacitors with Dy2O3 and ALD-based HfO2 Gate Oxide
指導教授: 黃惠良 教授
Prof. Huey-Liang Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 產業研發碩士積體電路設計專班
Industrial Technology R&D Master Program on IC Design
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 102
中文關鍵詞: 高介電係數材料
外文關鍵詞: Dy2O3, HfO2, High-k, MOS capacitors, charge-to-breakdown QBD
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文,在金氧半電容器上以氧化鏑 (Dy2O3) 和氧化鉿 (HfO2) 當作閘極絕緣層是被製作與研究的。分別使用射頻磁控式濺鍍與原子層化學沉積技術。在傳導機制上是以溫度為依據而被研究的。
    在X光繞射儀分析上,展現出氧化鏑 (Dy2O3)和氧化鉿 (HfO2)薄膜在氮氣圍繞下快速退火400度維持一分鐘後變成多晶體。在二次離子質譜儀分析上,在Dy2O3/p-Si結構下看出在氮氣圍繞下快速高溫退火400度維持一分鐘後鏑原子就擴散到矽晶圓和在氮氣圍繞下快速高溫退火700度維持一分鐘後矽原子就擴散到氧化鏑薄膜上。在ALD HfO2/p-Si結構下看出在氮氣圍繞下快速高溫退火400度維持一分鐘後鉿原子就擴散到矽晶圓。在電子顯微鏡分析上,展現出在氮氣圍繞下快速高溫退火400度維持一分鐘後有找到在高介電係數薄膜 (Dy2O3 or HfO2)與矽晶圓之間有產生界面層。
    在討論傳導機制方面,在Al/Dy2O3/p-Si結構上,發現在高溫(500K)高電場(2.9~4.8 MV/cm)下有蕭基發射機制產生。在Al/ALD HfO2/p-Si結構上,發現在高溫(>420K)高電場(1.56~2.25 MV/cm)下有蕭基發射機制產生而且在高溫(>420K)低電場(0.36~0.81 MV/cm)有普爾-法蘭克發射機制產生。在鋁與氧化鉿的能障高度為0.82 eV,電子有效質量為0.03m0。針對氧化鏑 (Dy2O3) 薄膜在不同溫度 (250C, 850C and 1250C) 施加定電流應力,萃取出的韋伯斜率大約為7。而氧化鏑 (Dy2O3) 薄膜在QBD63的活化能為23meV。


    In this thesis, Metal-Oxide-Si (MOS) capacitors with Dy2O3 and HfO2 gate dielectrics were fabricated and investigated. The Dy2O3 and HfO2 gate dielectrics were deposited by RF magnetron sputtering and atomic layer chemical vapor deposition (ALD), respectively. The temperature dependence of the conduction mechanisms for Al/Dy2O3 and HfO2/p-Si MOS capacitors was studied.
    XRD analysis revealed that Dy2O3 and HfO2 thin films were became polycrystalline when annealed in N2 ambient at 4000C for 1 minute. From SIMS analysis, the data for Dy2O3/p-Si structure showed Dy diffusion in Si in N2 ambient annealed at 400℃ and Si diffusion in Dy2O3 in N2 ambient annealed at 700℃. The data for ALD HfO2/p-Si structure revealed Hf diffusion Si in N2 ambient annealed at 400℃. TEM analysis revealed that an interface layer (IL) was formed between the annealed high-κ film (Dy2O3 and HfO2) and Si substrate.
    The dominant conduction mechanism of Al/Dy2O3/p-Si structure at high temperature (500K) is Schottky emission in high electric fields (2.9~4.8 MV/cm).The dominant mechanism of Al/ALD HfO2/p-Si structure at high temperature (>420K) is Schottky emission in high electric fields (1.56~2.25 MV/cm) and Poole-Frenkel emission in low electric fields (0.36~0.81 MV/cm). Experimental results showed that the Al/HfO2 barrier height and electron effective mass are 0.82 eV and 0.03m0, respectively. The extracted Weibull slope (□) for different temperatures of 250C, 850C and 1250C were found to be 7. The activation energy of Dy2O3 thin film calculated from the QBD63 plots was about 23meV.

    Contents I List of Tables III List of Figures IV Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 The Application of High-κ Dielectrics Thin Films 4 1.3 Outline of the thesis 4 References 6 Chapter 2 Fabrication Processes of High-κ Dielectrics 7 2.1 RF Magnetron Sputter Deposition 7 2.2 Atomic Layer Deposition (ALD) 8 2.3 Rapid Thermal Annealing (RTA) 9 2.4 MOS Capacitors with High-κ Dielectrics 11 References 13 Chapter 3 High-κ Dielectrics Thin Films Analysis 14 3.1 Physical Characteristics 14 3.1.1 X-Ray Diffraction (XRD) 14 3.1.2 Secondary Ion Mass Spectrometry (SIMS) 15 3.1.3 Auger Electron Spectrometer (AES) 16 3.1.4 X-ray Photoelectron Spectroscopy (XPS) 17 3.1.5 Transmission Electron Microscopy (TEM) 17 3.1.6 Medium Energy Ion Scatting (MEIS) 18 3.2 Electrical Characteristics 18 3.2.1 Capacitance - Voltage (C-V) 18 3.2.2 Current - Voltage (I-V) 19 3.2.3 Leakage Current Conduction Mechanisms 20 3.2.1.1 Schottky Emission 20 3.2.3.2 Poole - Frenkel Emission 22 3.2.3.3 Fowler – Nordheim Tunneling 24 3.2.3.4 Direct Tunneling 26 3.2.3.5 Effective Mass of Electron in Insulation Layer 28 References 30 Chapter 4 Dielectric Reliability 31 4.1 Dielectric Breakdown 31 4.1.1 Soft Breakdown and Hard Breakdown 31 4.2. Reliability 32 4.2.1 Extrinsic Breakdown and Intrinsic Breakdown 32 4.2.2 Charge-to-Breakdown (QBD) 33 4.2.3 Weibull Distribution Function 35 4.2.4 Thermal Activation Energy 36 References 37 Chapter 5 Experimental Results and Discussion 38 5.1 Physical Properties of High-κ Dielectrics Thin Films Analysis 38 5.1.1 X-Ray Diffraction (XRD) 38 5.1.2 Secondary Ion Mass Spectrometry (SIMS) 40 5.1.3 Auger Electron Spectrometer (AES) 47 5.1.4 X-ray Photoelectron Spectroscopy (XPS) 53 5.1.5 Transmission Electron Microscopy (TEM) 56 5.1.6 Medium Energy Ion Scatting (MEIS) 58 5.2 Electrical Properties of High-κ Dielectrics Thin Films Analysis 60 5.2.1 Capacitance - Voltage (C-V) 60 5.2.2 Current - Voltage (I-V) 62 5.2.3 Breakdown Voltage for Dy2O3 and ALD HfO2 thin films 63 5.2.4 Characteristics curves for ALD HfO2 capacitor at low temperature 72 5.2.5 Characteristics curves for Dy2O3 capacitor at high temperature 73 5.3 Leakage Current Conduction Mechanisms 75 5.3.1 Schottky emission 75 5.3.2 Poole-Frenkel emission 77 5.3.3 Fowler – Nordheim Tunneling 78 5.3.4 Effective Mass of Electron in Insulation Layer 79 5.4 Dielectric Reliability 80 5.4.1 Soft Breakdown and Hard Breakdown 80 5.4.2 Charge to breakdown for Dy2O3 thin films 82 5.4.3 Weibull distribution of VBD for Dy2O3 and ALD HfO2 thin films 84 5.4.4 Weibull distribution of QBD for Dy2O3 thin films 85 5.4.5 Activation energy (Ea) of QBD 63 for Dy2O3 thin films 86 References 88 Chapter 6 Conclusions and Future Studies 89 Appendix A 91 Appendix B 92 Appendix C 98 Appendix D 99

    [1] Michel Houssa, High-κ Gate Dielectrics, Chapter 1, p.3, Taylor and Francis (2004)
    [2] International Technology Roadmap for Semiconductors Home Page,
    http://public.itrs.net (2006)
    [3] J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265-291 (2004)
    [4] H. Iwai, S. Ohmi, S. Akama, C. Ohshima, A. Kikuchi, J. Taguchi, H. Yamamoto,
    J. Tonotsni, Y. Kim, I. Ueda, A. Kuriyama, and Y. Yoshihara, IEDM, p.625 (2002)
    [5] Takashi Hori, Gate Dielectrics and MOS ULSIs: principles, technologies and applications, Chapter 1, Springer, Berlin (1997)
    [6] T.K. Kundu and J. Y. Lee, J. Electrochem. Soc., 147, 326 (2000)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE