簡易檢索 / 詳目顯示

研究生: 陳政佑
Chen, JhengYou
論文名稱: 以高分子填充技術發展SOI差分電容式剪力感測器
Development of a differential capacitive shear force sensor with SOI and polymer fill-in technique
指導教授: 方維倫
Fang, Weileun
口試委員: 陳榮順
林家民
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 88
中文關鍵詞: 高分子填充觸覺剪力感測器
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著醫療科技和機器人的進展,觸覺感測器的需求也越來越重要,在機器人手指觸覺感測器的應用上,為了要準確地控制正向力的大小來避免抓取物體時造成物體的損壞,需要偵測機器人手指和物體之間滑動所產生的剪力大小來讓機器人手指能夠精準地控制所施加於物體的正向力。本研究提出一結合矽和高分子及奈米碳管的觸覺剪力感測器,透過SOI晶圓和高分子填充技術的結合來達成不用矽質彈簧的元件並利用奈米碳管來達成元件電性導出的目的,並降低正向力對剪力所造成的影響,完成電容式觸覺剪力感測器。整體元件特色整理如下: (1)利用PDMS作為元件的介電層,可以提高介電常數,增大電容值,而在元件上方填入PDMS更可達到保護元件的作用,(2)藉由PDMS來取代彈簧調變剛性的設計,由調變不同PDMS混和比例提供元件具有不同的靈敏度和感測範圍,(3)利用奈米碳管或矽質彈簧作為懸浮元件電性導出的目的。


    With the progress of medical technology and robotics, the demand of tactile sensor is more and more important. In the application of tactile sensor on robotic fingers, in order to control the size of normal force to avoid the damage by grab the object, we need to detect the shear force caused by sliding between robotic fingers and objects to let robotic finger accurate control the normal force. This study proposes a tactile shear force sensor combined with silicon and PDMS. With combining the SOI wafer and fill-in technique to achieve the device without silicon spring and reduce the influence of normal force to the shear force to complete the tactile shear force sensor. The device’s characteristics are summarized as follows: (1)Using PDMS as device’s dielectric layer can increase dielectric constant and capacitance value. The PDMS also can protect the device form damage. (2)The most important is the design which PDMS can replace the function of silicon spring of modulate stiffness. Changing the mix ratio of PDMS can provide the device different sensitivity and sensing range. (3)Using CNT or Silicon spring as electrical routing.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XIII 第1章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 文獻回顧 3 1-3.1 感測原理 3 1-3.2 製程技術 4 1-3.3 奈米碳管整合微機電製程之介紹 7 1-4 研究目標 8 第2章 元件分析與模擬 27 2-1 元件設計與模擬 27 2-2 差分式電容感測 30 2-3 MS3110電容感測電路 32 第3章 矽質彈簧與打線結構觸覺感測器 41 3-1 矽質彈簧觸覺感測器 41 3-1.1 製程步驟41 3-1.2 製程結果42 3-1.3 量測結果43 3-2 打線結構觸覺感測器 43 3-2.1 製程步驟43 3-2.2 製程結果45 3-2.3 製程結果討論46 第4章 結合奈米碳管之觸覺剪力感測器 58 4-1 製程步驟 58 4-2 光罩佈局 60 4-3 製程結果 61 4-4 製程結果討論 62 4-4.1 成長奈米碳管之問題62 4-4.2 背面深式反應離子蝕刻63 4-4.3 HF懸浮元件導致PDMS脫膜之問題64 第5章 結論與未來工作 78 5-1 結論 78 5-2 未來工作 79 參考文獻 82

    參考文獻
    [1] K.E. Petersen, “Silicon as a mechanical material,” Proceedings of the IEEE, Vol. 70, pp. 420-457, 1982.
    [2] R.T. Howe, R.S. Muller, K.J. Gabriel, and W.S.N. Trimmer, IEEE spectrum, Vol. 27, pp. 29-35, 1990.
    [3] 丁志銘等, “微機電系統技術與應用”, 國科會精密儀器發展中心, 2003.
    [4] K. Suzuki, K. Najafi, and K. D. Wise, “A 1024-Element High-Performance Silicon Tactile Imager,” Transactions On Electron Devices , Vol 37. No.8. August , 1990.
    [5] Z. Chu, P. M. Sarro, and S. Middelhoek, “Silicon three-axial tactile sensor,” Transducers Eurosensors, Stockholm , Sweden, June, 1995, pp. 656-659.
    [6] H. K. Lee, J. Chung, S.-I. Chang, and E. Yoon, ”Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors,” Journal of microelectromechanical systems, vol. 17, pp. 934-942, 2008.
    [7] M.-Y. Cheng, X.-H. Huang, C.-W. Ma, and Y.-J. Yang, “A flexible capacitive tactile sensing array with floating electrodes,” J. Micromech. Microeng. ,Vol. 19, 2009
    [8] R. Surapaneni, K. Park, M.A. Suster, D. J. Young, and C. H. Mastrangele, “A highly sensitive flexible pressure and shear sensor array for measurement of ground reactions in pedestrian navigation,” Transducer’11, Beijing, China,June, 2011, pp. 906-909.
    [9] H. K. Chu, J. K. Mills, and W. L. Cleghorn, “Design of a high sensitivity capacitive force sensor,” IEEE International Conference On Nanotechnology, Hong Kong, 2007.
    [10] C. C. Wen, W. Fang, “Tuning the sensing range and sensitivity of three axes tactile sensors using the polymer composite membrane,” Sensors and Actuators A 145-146, 2008, pp.14-22.
    [11] H. Hu, C. Liu, and N. Chen, “A robust tactile shear stress sensor derived from a bio-inspired artificial haircell sensor,” IEEE Sensors , Oct., 2008, pp 1517-1519.
    [12] H. Takahashi, A. Nakai, K. Matsumoto, and I. Shimoyama, “Shear force detector using piezo-resistive bemas with sidewall-doping,” IEEE MEMS International Conference, Paris, France, 2012, pp.599-602.
    [13] H.-K. Lee, S.-I. Chang, K.-H. Kim, S.-J. Kim, K.-S. Yun, and E. Yoon, ”A modular expandable tactile sensor using flexible polymer, ” IEEE MEMS International Conference, Jan. ,2005, pp 642-645.
    [14] S. L. Chang, H. K. Lee, and E. Yoon, “Flip-chip assembly on soft polymer substrate using ACP for integrating readout circuitry for modular expandable tactile sensor array”, Transducers '05, Vol. 2, 2005, pp 1969-1972.
    [15] S. H. Kim, J. Engel, C. Liu, and D. L. Jones, “Texture Classification. using a polymer based MEMS tactile sensor” , J. Micromech. Microeng., Vol. 15, pp. 912-920, 2005.
    [16] B. J. Kane, M. R. Cutkosky, and Gregory T. A. Kovacs, “Traction stress sensor array for use in high-resolution robotic tactile imaging,” Journal of microelectromechanical systems, Vol. 9 , No. 4, 2000
    [17] J. Engel, J. Chen,and C. Liu, “Development of polyimide flexible tactile sensor skin,” J. Micromech. Microeng, 2003, pp. 359-366
    [18] K. Kim, K. R. Lee, Y.K. Kim , D.S. Lee, N.K. Cho, W.H. Kim, K.B. Park, H.D. Park, J.H. Kim, and J.J. Pak, “3-axes flexible tactile sensor fabricated by Si micromachining and packaging technology,” IEEE MEMS International Conference, Istanbul, Turkey, Jan., 2006, pp 678-681.
    [19] K. Noda, K. oshino, K. Matsumoto, and I. Shimoyama, “A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material,” Sensors and Actuators A 127, 2006, pp.295-301
    [20] K. Noda, K. Matsumoto, and I. Shimoyama, “Flexible tactile sensor sheet with liquid filter for shear force detection,” IEEE MEMS International Conference, Sorrento, Italy ,Jan., 2009, pp 785-788.
    [21] E.-S. Hwang, J.-H. Seo, and Y.-J. Kim, ”A polymer-based flexible tactile sensor for normal and shear load detection, ” IEEE MEMS International Conference,Istanbul, Turkey, Jan., 2006, pp.22-26
    [22] R. F. Santos, P. F. Rocha, S. L.-M. C. Santos, and J. G. Rocha, ”3 axis capacitive tactile sensor,” IEEE ISIE, Dubrovnik, Croatia, June, 2005, pp 1539-1544.
    [23] M.A. Suster, C.Mastranelo, and D. J. young, “Low-interference sensing electronics for high-resolution error correcting biomechanical ground reaction sensor cluster, ” IEEE SENSORS, 2010, pp 1020-1023.
    [24] M.-Y. Cheng, C.-M. Tsao, Y.-Z. Lai, and Y.-J. Yang, “The development of a highly twistable tactile sensing array with stretchable helical electrodes,” Sensors and Actuators A, 2011,pp. 226-233.
    [25] M.-Y. Cheng, C.-M. Tsao and Y.-J. Yang, “An anthropomorphic robotic skin using highly twistable tactile sensing array,” IEEE Conference on Industrial Electronics and Applicationsi, Taichung ,Taiwan , June, 2010, pp 650-655.
    [26] M.-Y. Cheng, C.-M. Tsao and Y.-J. Yang, ”A novel highly-twistable tactile sensing array using extendable spiral electondes, ” IEEE MEMS International Conference, Sorrento, Italy, 2009, pp 92-95.
    [27] M. I. Tiwana, A. Shashank, S. J. Redmond, and N. H. Lovell, “Characterization of a capacitive tactile shear sensor for application in robotic and upper limb prostheses,” Sensors and Actuators A, 2011, pp. 164-172.
    [28] Y.-C. Liu, C.-M. Sun, L.-Y. Lin, M.-H. Tsai, and W. Fang, “A tunable range/sensitivity CMOS-MEMS capacitive tactile sensor with polymer fill-in technique,” IEEE Transducer,09, Denver, USA, June, 2009, pp 2190-21933.
    [29] Y.-C. Liu, C.-M. Sun , L-Y. Lin, M.-H. Tsai, and W. Fang, “Development of a CMOS-Based capacitive tactile sensor with adjustable sensing range and sensitivity using polymer fill-in,” Journal of microelectromechanical systems, 20, pp119-126, 2011.
    [30] C.-X. Liu and J.-W. Choi, “Patterning Conductive PDMS Nanocomposite in an Elastomer Using Microcontact Printing,” J. Micromech. Microeng., 19, pp 1-7, 2009.
    [31] W. Fang, H.-Y. Chu, W.-K. Hsu, T.-W. Cheng, and N.-H. Tai,“Polymer-Reinforced, Aligned Multiwalled Carbon Nanotube Composites for Microelectromechanical Systems Applications,” Adv. Mater., 17, pp 2987-2992, 2005.
    [32] X. Song, S. Liu, Z. Gan, Q. Lv, H. Cao, H. Yan, “Controllable Fabrication of Carbon Nanotube-Polymer Hybrid Thin Film for Strain Sensing,” Microelectronic Engineering, 86, pp 2330-2333, 2009.
    [33] C.-M. Lin, L.-Y. Lin, and W. Fang, “Monolithic Integration of Carbon Nanotubes Based Physical Sensors,” IEEE MEMS International Conference, Hongkong, China, January, 2010, pp 55-58.
    [34] C.-F. Hu, W.-S. Su, and W. Fang, “The Integration of CNTs-Based Flexible Tactile Sensor and Flexible Circuit by Polymer Molding Process,”Transducers’11, Beijing, China, June, 2011, pp 414-417.
    [35] 徐家保,”以SOI晶片實現三軸加速度計感測系統,”國立清華大學博士論文,2010
    [36] 劉育嘉,”以CMOS-MEMS製程結合高分子填充技術發展一可調感測範圍/靈敏度之電容式觸覺感測器,”國立清華大學碩士論文,2009
    [37] 胡志帆,”新型饒性壓力及觸覺感測陣列之研究,”國立清華大學碩士論文,2007
    [38] 王之妤,”三維奈米碳管與高分子整合製程之開發及其於撓性電容式感測元件之應用,”國立清華大學碩士論文,2011

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE