研究生: |
陳思妤 Chen, Ssu-Yu |
---|---|
論文名稱: |
模擬最佳化在供應商管理存貨模式下之 預測補貨策略 Simulation Optimization of Forecast-Replenishment Strategies with Vendor-Managed Inventory |
指導教授: | 林則孟 |
口試委員: |
王福琨
蘇哲平 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 124 |
中文關鍵詞: | 供應商管理存貨 、滾動式需求預測 、預測補貨策略 、凍結期間 、模擬最佳化 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
供應商管理存貨(Vendor/ Supplier-Managed Inventory, VMI/SMI, or Supplier-Owned Inventory, SOI)的應用,提供賣方快速迎合客戶需求與大幅縮短供貨前置時間的解決方案,並能使客戶專注於本業的核心競爭能力,但由於此模式較傳統補貨模式更加複雜,所以其中之決策如買方之需求預測行為、賣方之補貨策略與補貨參數等若設置不當時,對於賣方而言將承擔更大的存貨壓力。故如何提出一套適用於供應商管理存貨模式的預測補貨策略,以降低供應商之存貨壓力,將能有助於供應商具有更大意願配合導入供應商管理存貨的營運模式,亦才是真正達到了供應商管理存貨模式導入的實質意義。
本研究將使用一套有效考量滾動式需求預測之預測補貨策略,由於此補貨策略是以未來期間需求預測資訊進行預計補貨量之決策,故稱之為「預測向前補貨(Forecast Forward Replenishment, FFR)」,並以具有Trade-off特性之績效進行探討,設置在滿足特定服務水準下,最小化平均存貨量為考量,透過模擬最佳化之方法找出與此補貨策略相關因子規劃期間、凍結期間以及安全庫存策略之最佳補貨因子參數組合。接著,本研究透過真實案例公司之歷史資訊,驗證使用本研究歸納之預測補貨策略結合最佳化參數求解之方法,會較業界所使用之傳統補貨策略有更好存貨績效。最後,本研究將發展一套FFR補貨策略結合最佳化補貨因子參數求解之設置步驟,期望供業界進行參考。
1. 張怡筠,「CPFR中滾動式預測的關鍵因子探討」,國立清華大學資訊系統與應用所碩士論文,2006。
2. 陳昭廷,「CPFR協同預測中之承諾機制的影響因子分析」,國立清華大學工業工程管理學所碩士論文,2007。
3. 李建勳,「供應商管理庫存下之預測補貨策略」,國立清華大學工業工程管理學所碩士論文,2008。
4. 蔡志宏,「預測補貨策略對供應商成本之影響評估」,國立清華大學工業工程管理學所碩士論文,2009。
5. 邱毅盛,「供應商管理存貨模式下滾動式預測補貨策略分析」,國立清華大學工業工程管理學所碩士論文,2010。
6. Axsater, S. and Rosling, K., “Multi-level production-inventory control: Material requirements planning or reorder point policies”, European Journal of Operational Research, 75, pp.405-412, 1994.
7. Boulaksil, Y., Fransoo, J.C. and Ernico, N. G. van Halm,. “Setting safety stocks in multi-stage inventory systems under rolling horizon mathematical programming models”, OR Spectrum, 31, pp.121-140, 2007.
8. Bregman, R. L., “An analytical framework for comparing material requirements planning to reorder point systems”, European Journal of Operational Research, 75, pp.74-88, 1994.
9. Byrne,M.D., Bakir, M.A. “Production planning using a hybrid simulation-
analytical approach” , International Journal of Production Economics, 59 , pp.305-311, 1999.
10. Chen,C.K., Liao,C., Weng,T.C., “ Optimal replenishment policies for the case of a demand function with product-life-cycle shape in a finite planning horizon” , Expert Systems with Applications, 32 ,pp.65-76, 2007.
11. Chang, T.M. and Yih, Y. ,Generic kanban systems of dynamic environments”, International Journal of Production Research, 32, pp.889–902. 1994.
12. Damodaran, P. and Melouk, S. “Comparison of push and pull systems with transporters: a meta-modelling approach”, International Journal of Production Research, 40, pp.2923–2936, 2002.
13. De Toni, A.F. and Zamolo, E, “ From a traditional replenishment system to vendor-managed inventory: A case study from the household electrical appliances sector”, International Journal of Production Economics, 96(1), pp.63-79, 2005.
14. Dengiz ,B., and Akbay K.S., “Computer simulation of a PCB production line: metamodeling approach”, International Journal of Production Economics, 63 ,pp.195-205, 2000.
15. Dengiz, B., Bektas, T. and Ultanir, A. E., “Simulation optimization based DSS application: A diamond tool production line in industry”, Simulation Modeling Practice and Theory, 14(3), pp. 296-312, 2006
16. Dong, Y., and Xu, K., “A supply chain model of vendor -managed inventory”, Transportation Research Part E , 38, pp.75-95, 2002.
17. Enns, S. T., “PULL replenishment performance as function of demand rate and setup times under optimal settings”, Proceedings of the 2007 Winter Simulation Conference, 2007.
18. Gaury, E.G.A., Pierreval, H. and Kleijnen, J.P.C. “An evolutionary approach to select a pull system among kanban, CONWIP and hybrid”, Journal of Intelligent Manufacturing, 11, pp.157–167, 2000.
19. Geraghty, J. and Heavey, C., “A comparison of hybrid push/pull and CONWIP/pull production inventory control policies”, International Journal of Production Economics, 91, pp.75-90, 2004.
20. Grewal, C. S., Rogers, P. and Enns, S. T., “Simulation optimization of supply chain replenishment strategies using OptQuest”, Proceedings of the 2008 Winter Simulation Conference, 2008
21. Grewal, C. S., Rogers, P. and Enns, S. T., “Performance evaluation of inventory replenishment strategies in a capacitated supply chain under optimal parameter settings”, International Journal of Value Chain Management, 4, pp.195–212,
2010.
22. Grosfeld-Nir, A. and Magazine, M. , “A simulation study of pull systems with ascending/descending buffers and stochastic processing times”, International Journal of Production Research, 43, pp.3529–3541. 2005.
23. Henderson ,S.G., and Henderson ,B.L. ,Handbook in OR & MS ,2006.
24. Jay, H. and Barry, R., “Operations Management”, Hwa Tai Publishing, 2010.
25. Huang, M., Wang, D. and Ip, W.H., “A simulation and comparative study of the CONWIP, Kanban and MRP production control systems in a cold rolling plant”, Production Planning and Control, 9 , pp.803–812. 1997
26. Jacobs, F. R and Whybark, D. C., “A comparison of reorder point and material eequirements planning inventory control logic”, Decision Sciences, 23, pp.332-342, 1992.
27. Jodlbauer, H. and Huber, A., “Service-level performance of MRP, kanban, CONWIP and DBR due to parameter stability and environmental robustness”, International Journal of Production Research, 46, pp.2179–2195, 2008.
28. Kazim, S., “On the benefits of CPFR and VMI: A comparative simulation study”, International Journal of Production Economics, 113, pp.575-586, 2008
29. Krishnamurthy, A., Suri, R. and Vernon, M., “Re-examining the performance of MRP and kanban material control strategies for multi-product flexible manufacturing systems”, International Journal of Flexible Manufacturing Systems, 16, pp.123–150, 2004.
30. Krupp, J.A.G., “Safety stock management”, Production and Inventory Management Journal, 38(3) , 1997.
31. Kuk, G., ” Effectiveness of vendor-managed inventory in the electronics industry: determinants and outcomes”, Information & Management, 41, pp.645-654, 2004.
32. Mentzer,T.J. , Gundlach,G.T. and Achrol, R.S., “ The Structure of Commitment in Exchange” ,The Journal of Marketing ,59,pp.78-92,1995.
33. Montgomery, D. C., “Design and Analysis of Experiments”, New York : Wiley, 2005.
34. Nordhasu, W., “Forecasting efficiency: concepts and applications”, Review of Economics and Static 69, pp.667-674, 1987.
35. Piplani, R. and Viswanathan, S., ”A model for evaluating supplier-owned inventory strategy”, International Journal of Production Economics, 81-82, pp.565-571, 2003.
36. Pohlen, T. L. and Goldsby, T. J., “VMI and SMI programs: How economic value added can help sell the change”, International Journal of Physical Distribution & Logistics Management, 33, pp.565-581, 2003.
37. Rees, L.P., Huang, P.Y. and Taylor, B.W. “A comparative analysis of an MRP lot-for-lot system and a kanban system for a multistage production operations”,, International Journal of Production Research, 27, pp.1427–1443, 1989.
38. Ritzman, L. P. and Krajewski, L. J., “Comparisons of material requirements planning and reorder point systems”, Simulation Councils Proc. Series, 12, pp.47-54, 1983.
39. Robins, G. “Pushing the limits of VMI”, Stores, 77, pp.42-44, 1995.
40. Sani, B. and Kingsman, B. G., “Selecting the best periodic inventory control and demand forecasting methods for low demand items”, Journal of the Operational Research Society, 48, pp.700-713, 1997
41. Silver, E. A. and Meal, H. C., “A heuristic for selecting lot size quantities for the case of a deterministic time-varying demand rate and discrete opportunities for replenishment”, Production & Inventory Management, 14(2), pp.64-74, 1973.
42. Silver, E. A., Pyke, D. F. and Petetson, R., “Inventory Management and Production Planning and Scheduling”, New York: Wiley, 1998.
43. Suwanruji, P. and Enns, S.T., “Information and logic requirements for replenishment systems”, International Journal of Operations and Quantitative Management, 8, pp.149-164, 2002.
44. Suwanruji, P. and Enns, S.T., “Evaluating the effects of capacity constraints and demand patterns on supply chain replenishment strategies”, International Journal of Production Research., 44(21), pp.4607-4629, 2006.
45. Takahashi, K., Myreshka, H.O. and Hirotani, D. , “Comparing CONWIP, synchronized CONWIP, and kanban in complex supply chains”, International Journal of Production Economics, 93–94, pp.25–40, 2005.
46. Tiacci, L. and Saetta, S., “An approach to evaluate the impact of interaction between demand forecasting method and stock control policy on the inventory system performances”, International Journal of Production Economics, 118, pp.63-71, 2009.
47. Yang, K.K., “A comparison of reorder point and kanban policies for a single machine production system”, Production Planning & Control, 9, pp.385-390, 1998.
48. Yang, K.K., “Managing a flow line with single-kanban, dual-kanban or CONWIP ”, Production Planning & Control, 9, pp.349-366, 2000.
49. Zhao, X. and Lee, T. S., “Freezing the master production schedule for material requirements planning systems under demand uncertainty”, Journal of Operations Management, 11, pp.185-205, 1993.
50. Zhao, X., Xie, J. and Lau, R. S. M., “Improving the supply chain performance: use of forecasting models versus early order commitments”, International Journal of Production Research, 39(17), pp.3923-3939, 2001.
51. Zotteri, G., “The impact of distributions of uncertain lumpy demand on inventories” , Production Planning & Control, 11(1), pp.32- 43, 2000.