簡易檢索 / 詳目顯示

研究生: 吳閎遂
Wu, Hung Sui
論文名稱: 以溶液凝膠法製備矽酸鋰錳添加磷酸鋰錳材料 (1-x)Li2MnSiO4‧xLiMnPO4並探討其電性表現
Investigation of Electrical Performance of (1-x)Li2MnSiO4‧xLiMnPO4 Synthesized by Sol-gel Process
指導教授: 蔡哲正
Tsai, Cho Jen
口試委員: 甘炯耀
林居南
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 83
中文關鍵詞: 鋰離子電池
外文關鍵詞: lithium ion battery
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰離子電池因具有高能量密度與高功率的特性,近年來成為最有潛力的能源儲存材料。其中矽酸鋰錳陰極材料因為具有300 mAh/g以上的理論電容量而被廣泛研究。但由於矽酸鋰錳很低的電子、離子導電度與結構不穩定的特性,導致循環壽命不佳且電壓平台不明顯的結果。
    本實驗是以溶液凝膠法製備矽酸鋰錳,並添加磷酸鋰錳以改善電性。由於磷酸鋰錳的磷酸根與矽酸根都是屬於四面體結構,並且磷酸鋰錳有較佳的導電度與結構穩定性,本身也能參與充放電反應,預期添加後能夠改善矽酸鋰錳的電性表現。
    然而不如預期的是當矽酸鋰錳添加磷酸鋰錳後,並無磷酸鋰錳的相生成,反而造成矽酸鋰錳相的結晶度與純度變差。但電性表現仍有大幅的改善,未添加磷酸鋰錳時,以0.05C充放電速度下,放電電容量約100 mAh/g,添加10 %磷酸鋰錳後,放電電容量可達160 mAh/g左右,電壓平台也變得更明顯。


    Lithium ion battery becomes one of the most promising energy storage systems recently, because of its high theoretical energy density and high power. The Li2MnSiO4 as cathode material has been widely studied because it has high theoretical discharge capacity which is more than 300 mAh/g. However, due to its low electronic and ionic conductivity and structural instability, Li2MnSiO4 has poor cycle life and unobvious voltage platform.
    In this experiment, we used sol-gel method to synthesis Li2MnSiO4 and partially substituted with LiMnPO4 in order to improve performance by increasing its conductivity, improving its structural stability, and enhancing electrochemical reactivity.
    With the partial substitution of LiMnPO4, there was no LiMnPO4 phase synthesized. The materials remain less Pmn21 phase and more P121/n1 phase. The electrical performances of the one partially substituted with LiMnPO4 is better than that without substitution. The discharge capacity of Li2MnSiO4 which was not substituted was about 100 mAh/g at 0.05C and that substituted by 10 % LiMnPO4 was about 160 mAh/g at 0.05C having more obvious voltage platform as well.

    Abstract.....i 摘要.....ii 目錄........iii 圖目錄.................vi 表目錄............. xiii 第一章緒論.......... 1 1.1 能源市場.......... 1 1.2 鋰離子電池工作原理........... 2 1.3 陰極材料........................... 3 1.4 研究動機.............. 8 第二章文獻回顧..... 10 2.1 矽酸鋰錳缺點......... 10 2.1.1 電子導電度............. 10 2.1.2 離子導電度............. 11 2.1.3 結構穩定性............. 13 2.2 電性改良方法............. 15 2.2.1 材料尺寸奈米化.......... 15 2.2.2 表面碳包覆............... 18 2.2.3 體相取代........... 21 2.2.4引入磷酸鋰鹽系列的材料......... 24 第三章實驗步驟........... 26 3.1 材料製備................ 26 3.2材料鑑定分析........... 28 3.2.1 X – ray繞射分析.............. 28 3.2.2 掃描式電子顯微鏡......... 28 3.2.3 粒徑分析............... 28 3.3 電池製備........................29 3.3.1 電極片製備................ 29 3.3.2 電池組裝............... 30 3.4 材料電性分析............. 31 3.4.1 循環壽命測試................. 31 3.4.2 循環伏安測試................ 31 3.4.3 交流阻抗測試................. 31 第四章結果與討論................ 32 4.1 硝酸添加量與酯化溫度對LMS結晶性與相之影響...... 32 4.1.1 不同硝酸添加量對150 oC、100 oC蒸乾溫度......... 32 4.1.2 酯化溫度120 oC、150 oC分別燒8、12、16小時...... 38 4.2 球磨與包碳對LMS相與電性表現之影響.................... 40 4.2.1 球磨前後顆粒大小變化................ 41 4.2.2 不同碳源比例包碳...................... 43 4.3預燒與終燒溫度對LMS相與電性表現之影響............. 47 4.3.1 不同預燒溫度與700 oC終燒.............................. 47 4.3.2 不同預燒溫度與750 oC終燒.................................... 54 4.4預燒與終燒溫度對添加10%的LMSP相與電性表現之影響........ 58 4.4.1 不同預燒溫度與700 oC終燒............ 59 4.4.2 不同預燒溫度與750 oC終燒................ 66 4.5 添加不同比例的LiMnPO4對相與電性表現之影響............ 70 第五章結論................. 78 第六章參考文獻............... 80

    1. Thackeray, M.M., C. Wolverton, and E.D. Isaacs, Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries.Energy & Environmental Science, 2012. 5(7): p. 7854.
    2. Kraytsberg, A. and Y. Ein-Eli, Higher, Stronger, Better…︁ A Review of 5 Volt Cathode Materials for Advanced Lithium-Ion Batteries. Advanced Energy Materials, 2012. 2(8): p. 922-939.
    3. Gong, Z. and Y. Yang, Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy & Environmental Science, 2011. 4(9): p. 3223.
    4. Mohanty, D., et al., Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. Journal of Power Sources, 2013. 229: p. 239-248.
    5. Xu, B., et al., Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering: R: Reports, 2012. 73(5-6): p. 51-65.
    6. Arroyo-de Dompablo, M.E., et al., On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M=Fe, Mn, Co, Ni). Electrochemistry Communications, 2006. 8(8): p. 1292-1298.
    7. Moriya, M., et al., Synthesis of Hybrid Li2MnSiO4 Nanoparticles with Carbon for Cathode Materials with Stable Charge/Discharge Cycles. Journal of the Electrochemical Society, 2013. 161(1): p. A97-A101.
    8. Bakenov, Z. and I. Taniguchi, LiMnPO4 Olivine as a Cathode for Lithium Batteries. The Open Materials Science Journal, 2011: p. 222-227.
    9. Anton Kokalj, R.D., Gregor Mali, Anton Meden, Miran Gaberscek, and and J. Jamnik, Beyond One-Electron Reaction in Li Cathode Materials : Designing Li2MnxFe1-xSiO4. Chem. Mater. , 2007: p. 3633-3640.
    10. Fisher, C.A.J., N. Kuganathan, and M.S. Islam, Defect chemistry and lithium-ion migration in polymorphs of the cathode material Li2MnSiO4. Journal of Materials Chemistry A, 2013. 1(13): p. 4207.
    11. Freitag, R. and J. Conradie, Understanding the Jahn–Teller Effect in Octahedral Transition-Metal Complexes: A Molecular Orbital View of the Mn(β-diketonato)3Complex. Journal of Chemical Education, 2013. 90(12): p. 1692-1696.
    12. Hwang, J., et al., Hydrothermal synthesis of Li2MnSiO4: Mechanism and influence of precursor concentration on electrochemical properties. Metals and Materials International, 2013. 19(4): p. 855-860.
    13. Won, S., et al., Physical and electrochemical characteristics of carbon content in carbon-coated Li2MnSiO4 for rechargeable lithium batteries. Journal of Applied Electrochemistry, 2014. 45(2): p. 169-176.
    14. Wang, M., et al., Structural Evolution and Electrochemical Performance of Li2MnSiO4/C Nanocomposite as Cathode Material for Li-Ion Batteries. Journal of Nanomaterials, 2014. 2014: p. 1-6.
    15. Qu, L., et al., Synthesis and characterization of high capacity Li2MnSiO4/C cathode material for lithium-ion battery. Journal of Power Sources, 2014. 252: p. 169-175.
    16. Park, K.-S., et al., Enhanced electrochemical performance of carbon-coated Li2MnSiO4 nanoparticles synthesized by tartaric acid-assisted sol–gel process. Ceramics International, 2014. 40(7): p. 9413-9418.
    17. Kim, S.J., et al., Mesoporous silica-assisted carbon free Li2MnSiO4 cathode nanoparticles for high capacity Li rechargeable batteries. Phys Chem Chem Phys, 2014. 16(5): p. 2085-9.
    18. Wang, F., et al., Fast sol–gel synthesis of mesoporous Li2MnSiO4/C nanocomposite with improved electrochemical performance for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2013. 688: p. 123-129.
    19. Świętosławski, M., et al., Nanocomposite C/Li2MnSiO4 cathode material for lithium ion batteries. Journal of Power Sources, 2013. 244: p. 510-514.
    20. Sun, D., et al., In-situ synthesis of carbon coated Li2MnSiO4 nanoparticles with high rate performance. Journal of Power Sources, 2013. 242: p. 865-871.
    21. Liu, S., et al., High capacity Li2MnSiO4/C nanocomposite prepared by sol–gel method for lithium-ion batteries. Journal of Power Sources, 2013. 232: p. 258-263.
    22. Devaraj, S., et al., Sol–gel derived nanostructured Li2MnSiO4/C cathode with high storage capacity. Electrochimica Acta, 2013. 102: p. 290-298.
    23. Zhai, P.-Y., et al., Synthesis and structural stability of Li2.1Mn0.9[PO4]0.1[SiO4]0.9/C mixed polyanion cathode material for Li-ion battery. Electrochimica Acta, 2015. 153: p. 217-224.
    24. Wang, M., et al., The high capacity and excellent rate capability of Ti-doped Li2MnSiO4as a cathode material for Li-ion batteries. RSC Adv., 2015. 5(2): p. 1612-1618.
    25. Lai, C., et al., Mo-doped Li2MnSiO4/C nanocomposite synthesized by citric acid-assisted sol-gel method with enhanced electrochemical properties. Materials Letters, 2015. 139: p. 134-137.
    26. Zhang, S., et al., Cr-doped Li2MnSiO4/carbon composite nanofibers as high-energy cathodes for Li-ion batteries. Journal of Materials Chemistry, 2012. 22(29): p. 14661.
    27. Zhang, S., et al., High-capacity Li2Mn0.8Fe0.2SiO4/carbon composite nanofiber cathodes for lithium-ion batteries. Journal of Power Sources, 2012. 213: p. 10-15.
    28. Wang, M., et al., Synthesis and improved electrochemical properties of Na-substituted Li2MnSiO4 nanoparticles as cathode materials for Li-ion batteries. Chemical Physics Letters, 2015. 619: p. 39-43.
    29. Zhang, S., et al., Li2+xMn1−xPxSi1−xO4/C as novel cathode materials for lithium ion batteries. Electrochimica Acta, 2013. 107: p. 406-412.
    30. Gao, H., et al., Intergrown Li2FeSiO4.LiFePO4-C nanocomposites as high-capacity cathode materials for lithium-ion batteries. Chem Commun (Camb), 2013. 49(29): p. 3040-2.
    31. Zhang, X., et al., A one-pot sol–gel process to prepare a superhydrophobic and environment-resistant thin film from ORMOSIL nanoparticles. RSC Advances, 2014. 4(19): p. 9838.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE