簡易檢索 / 詳目顯示

研究生: 邱威超
Chiu, Wei-Chao
論文名稱: Subwavelength Silicon-Wire Photonics
次波長矽線波導光學
指導教授: 李明昌
Lee, Ming-Chang M.
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 110
中文關鍵詞: hydrogen annealingintegrated opticsmultimode inteferencemicro-electro-mechanical systemssilicon photonicssilicon-on-insulator
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A new technology using hydrogen annealing and thermal oxidation is introduced to make subwavelength photonic wires as well as to achieve three-dimensional photonic integration on a silicon-on-insulator (SOI) substrate.
    Due to the hydrogen-annealing-induced profile transformation, the silicon wire with very smooth sidewall is accomplished, showing the propagation loss as low as 1.26 dB/cm. Moreover, a tapered beam spot-size converter is developed and monolithically integrated with subwavelength silicon wires. Owing to the low on-chip optical loss, nonlinear optical processes such as four-wave mixing, Raman emission and amplification, and anti-Stokes Raman conversion are observed at the pump power around just tens of milliwatts.
    To achieve large-scale integration of photonic circuits, waveguide couplers are essential to device integration and functioning. Thus a very compact two-dimensional multimode interference coupler with dual-layer silicon photonic wires is demonstrated for the first time using the similar fabrication technology. Two devices, a 1×1 cross power coupler and a 1×4 power splitter, are presented and characterized. The experimental result shows a 1.1-nm 3-dB transmission bandwidth, and on-chip coupling losses of 8.6 dB and 2.84 dB with respect to the 1×1 cross coupler and 1×4 splitter. This work shows the possibility to realize photonic integrated circuits in three dimensions on a silicon-on-insulator (SOI) substrate.
    For realizing active functions such as optical switch, signal modulation and attenuation on photonic circuits via the interference-type devices, it is important to control optical phase without amplitude dependency. However, it is challenging to be accomplished by using the conventional p-i-n or pn phase modulators based on the plasma dispersion effect due to the strong free-carrier absorption. A deformable silicon wire actuated by micro-electro-mechanical-systems (MEMS) offers an efficient way to control optical phase without causing much amplitude variation. By mechanically stretching the waveguide physical length, a 0.1-pi phase shift could be achieved via actuation of a single actuator at 240 V. The amplitude variation during the mechanical actuation is measured to be within 0.063 dB for both TE- and TM-polarized waves. To the authors’ best knowledge, this is the first time that a waveguide phase modulator decoupling from amplitude variation has been realized based on MEMS and silicon photonic technologies.


    CHAPTER 1: Introduction ……………………………………………………….. 1 1.1 Photonic Nanowires ………………………………………………….......... 1 1.2 Overviews of Silicon Photonic Wires ……………………………………... 3 1.3 Research in This Thesis ……………………………………………............ 4 1.4 Dissertation Organization …………………………………………………. 6 CHAPTER 2: Fabrication of Low-Loss Silicon Photonic Wires ………………… 9 2.1 Mechanism of Self-Profile Transformation ……………………………… 10 2.1.1 Process Characterization …………………………………………… 10 2.1.2 3-D Profile Transformation …………………………………………... 12 2.1.3 Sidewall Roughness Reduction ………………………………………. 14 2.2 3-D Integration of Silicon Photonic Wires and Tapered Couplers ………. 15 2.3 Experimental Results …………………………………………………….. 18 2.4 Summary …………………………………………………………………. 20 CHAPTER 3: 3rd-Order Nonlinearities in Silicon Photonic Wires ……………... 23 3.1 Nonlinear Optical Absorption ……………………………………………. 26 3.2 Four-Wave Mixing ……………………………………………………….. 29 3.3 Raman Scattering ………………………………………………………… 35 3.3.1 Spontaneous Raman Scattering ………………………………………. 39 3.3.2 Stimulated Raman Amplification …………………………………….. 41 3.3.3 Anti-Stokes Raman Conversion ……………………………………… 43 3.4 Summary …………………………………………………………………. 47 CHAPTER 4: 2-D MMI Couplers with Silicon Photonic Wires ………………... 49 4.1 Self-Imaging Principle …………………………………………………… 50 4.1.1 1-D Multimode Interference (MMI) …………………………………. 51 4.1.2 2-D Self-Imaging Properties …………………………………………. 57 4.2 Integration of MMI Couplers and Two Layers of Photonic Wires ……... 63 4.2.1 Fabrication …………………………………………………………… 64 4.2.2 Two Layers of Photonic Wires ……………………………………... 65 4.3 Device Design and Analysis ……………………………………………... 66 4.3.1 1×1 Cross Power Coupler …………………………………………… 66 4.3.2 1×22 Power Splitter ………………………………………………….. 68 4.4 Experimental Results ……………………………………………………. 69 4.5 Discussion ………………………………………………………………. 72 4.6 Summary …………………………………………………………………. 75 CHAPTER 5: MEMS Waveguide Phase Modulator ……………………………. 77 5.1 Schematic of the Device …………………………………………………. 78 5.2 Actuator Design and Analysis …………………………………………… 80 5.3 Fabrication ……………………………………………………………….. 84 5.4 Experimental Results …………………………………………………….. 85 5.4.1 Polarization Dependence …………………………………………….. 87 5.4.2 Wavelength Dependence ……………………………………………... 89 5.4.3 Dynamic Response …………………………………………………… 90 5.5 Summary …………………………………………………………………. 92 CHAPTER 6: Conclusion ………………………………………………………. 93 REFERENCES ……………………………………………………………………... 95 APPENDIX A: Deep Silicon Etching Process .………………………………... 105 APPENDIX B: Hydrogen Annealing Process .……………………………….... 107 APPENDIX C: Vita and Publications ……….……………………………….... 109

    [1] M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, "Nonlinear optics in photonic nanowires," Optics Express, vol. 16, pp. 1300-1320, Jan 2008.
    [2] R. Dekker, N. Usechak, M. Forst, and A. Driessen, "Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides," Journal of Physics D-Applied Physics, vol. 40, pp. R249-R271, Jul 2007.
    [3] L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature, vol. 426, pp. 816-819, Dec 2003.
    [4] S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, and M. W. Mason, "Supercontinuum generation in submicron fibre waveguides," Optics Express, vol. 12, pp. 2864-2869, Jun 2004.
    [5] T. Tsuchizawa, K. Yamada, T. Watanabe, H. Fukuda, H. Nishi, H. Shinojima, and S. Itabashi, "Spot-size converters for rib-type silicon photonic wire waveguides," in 2008 5th IEEE International Conference on Group Iv Photonics, 2008, pp. 200-202.
    [6] Y. Vlasov and S. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express, vol. 12, pp. 1622-1631, 2004.
    [7] T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, pp. 232-240, Jan-Feb 2005.
    [8] A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Optics Express, vol. 14, pp. 4357-4362, May 2006.
    [9] S. J. McNab, N. Moll, and Y. A. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Optics Express, vol. 11, pp. 2927-2939, Nov 2003.
    [10] W. Freude, J. M. Brosi, C. Koos, P. Vorreau, L. C. Andreani, P. Dumon, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, and J. Leuthold, "Silicon-organic hybrid (SOH) devices for nonlinear optical signal processing," in 2008 10th Anniversary International Conference on Transparent Optical Networks, New York, 2008, pp. 84-87.
    [11] J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, "Silicon organic hybrid technology - a platform for practical nonlinear optics," Proceedings of the IEEE, vol. 97, pp. 1304-1316, Jul 2009.
    [12] M. C. M. Lee, W. C. Chiu, T. M. Yang, and C. H. Chen, "Monolithically integrated low-loss silicon photonic wires and three-dimensional tapered couplers fabricated by self-profile transformation," Applied Physics Letters, vol. 91, Nov 2007.
    [13] M. C. M. Lee, W. C. Chiu, T. M. Yang, C. H. Chen, and M. C. Wu, "Low-loss silicon wire waveguides with 3-D tapered couplers fabricated by self-profile transformation," in Conference on Lasers and Electro-Optics Baltimore, MD, USA, 2007.
    [14] C. Grillet, C. Smith, D. Freeman, S. Madden, B. Luther-Davis, E. C. Magi, D. J. Moss, and B. J. Eggleton, "Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires," Optics Express, vol. 14, pp. 1070-1078, Feb 2006.
    [15] Y. L. Ruan, W. T. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, "Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching," Optics Express, vol. 12, pp. 5140-5145, Oct 2004.
    [16] G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Optics Express, vol. 14, pp. 9377-9384, Oct 2006.
    [17] J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, "Photonic-wire laser," Physical Review Letters, vol. 75, pp. 2678-2681, Oct 1995.
    [18] M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Materials, vol. 3, pp. 211-219, Apr 2004.
    [19] R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "All-optical regeneration on a silicon chip," Optics Express, vol. 15, pp. 7802-7809, Jun 2007.
    [20] J. Leuthold, C. Koos, and W. Freude, "Nonlinear silicon photonics," Nature Photonics, vol. 4, pp. 535-544, Aug 2010.
    [21] M. C. M. Lee and M. C. Wu, "Tunable coupling regimes of silicon microdisk resonators using MEMS actuators," Optics Express, vol. 14, pp. 4703-4712, May 2006.
    [22] T. Kato, Y. Suetsugu, and M. Nishimura, "Estimation of nonlinear refractive index in various silica-based glasses for optical fibers," Optics Letters, vol. 20, pp. 2279-2281, Nov 1995.
    [23] H. K. Tsang and Y. Liu, "Nonlinear optical properties of silicon waveguides," Semiconductor Science and Technology, vol. 23, p. 9, Jun 2008.
    [24] J. S. Aitchison, "All-optical switching using AlGaAs waveguide devices at 1.55 μm," in IEE Colloquium on Ultra-Short Optical Pulses, 1993, pp. 8/1-8/5.
    [25] M. S. Alam, M. S. Rahman, M. R. Islam, A. G. Bhuiyan, and M. Yamada, "Refractive Index, absorption coefficient, and photoelastic constant: key parameters of InGaAs material relevant to InGaAs-based device performance," in 2007 IEEE 19th International Conference on Indium Phosphide & Related Materials, 2007, pp. 343-346.
    [26] D. A. B. Miller, "Device Requirements for Optical Interconnects to Silicon Chips," Proceedings of the IEEE, vol. 97, pp. 1166-1185, Jul 2009.
    [27] K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model," Applied Physics Letters, vol. 77, pp. 1617-1619, Sep 2000.
    [28] K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, "Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction," Optics Letters, vol. 26, pp. 1888-1890, Dec 2001.
    [29] T. Morosawa, K. Saito, Y. Takeda, T. Kunioka, A. Shimizu, J. Kato, T. Matsuda, Y. Kuriyama, Y. Nakayama, and Y. Matsui, "EB-X3: New electron-beam x-ray mask writer," Journal of Vacuum Science & Technology B, vol. 17, pp. 2907-2911, Nov-Dec 1999.
    [30] C. Takahashi, Y. Jin, K. Nishimura, and S. Matsuo, "Anisotropic etching of Si and WSiN using ECR plasma of SF6-CF4 gas mixture," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 39, pp. 3672-3676, Jun 2000.
    [31] M. C. M. Lee and M. C. Wu, "Thermal annealing in hydrogen for 3-D profile transformation on silicon-on-insulator and sidewall roughness reduction," Journal of Microelectromechanical Systems, vol. 15, pp. 338-343, Apr 2006.
    [32] J. I. Dadap, R. L. Espinola, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, "Spontaneous Raman scattering in ultrasmall silicon waveguides," Optics Letters, vol. 29, pp. 2755-2757, Dec 2004.
    [33] D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, "Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides," Applied Physics Letters, vol. 86, Feb 2005.
    [34] D. Taillaert, P. Bienstman, and R. Baets, "Compact efficient broadband grating coupler for silicon-on-insulator waveguides," Opt. Lett., vol. 29, pp. 2749-2751, 2004.
    [35] R. Gunther, S. Jonathan, T. Dries Van, and B. Roel, "High efficiency fiber-to-waveguide grating couplers in silicon-on-insulator waveguide structures," in Integrated Photonics and Nanophotonics Research and Applications, 2007, p. IMC2.
    [36] N. Sato and T. Yonehara, "Hydrogen annealed silicon-on-insulator," Applied Physics Letters, vol. 65, pp. 1924-1926, Oct 1994.
    [37] J. Nara, T. Sasaki, and T. Ohno, "Adsorption and diffusion of Si atoms on the H-terminated Si(001) surface: Si migration assisted by H mobility," Physical Review Letters, vol. 79, pp. 4421-4424, Dec 1997.
    [38] W. W. Mullins, "Theory of thermal grooving," Journal of Applied Physics, vol. 28, pp. 333-339, 1957.
    [39] K. Sudoh, H. Iwasaki, H. Kuribayashi, R. Hiruta, and R. Shimizu, "Numerical study on shape transformation of silicon trenches by high-temperature hydrogen annealing," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 43, pp. 5937-5941, Sep 2004.
    [40] M. C. M. Lee, W. C. Chiu, T. M. Yang, C. H. Chen, C. Y. Lu, and G. R. Lin, "Fabrication of low-loss silicon photonic wires by self-profile transformation and applications in three-dimensional photonic integration and nonlinear optics," IEEE Journal of Quantum Electronics, vol. 46, pp. 650-657, May 2010.
    [41] T. Sato, K. Mitsutake, I. Mizushima, and Y. Tsunashima, "Micro-structure transformation of silicon: A newly developed transformation technology for patterning silicon surfaces using the surface migration of silicon atoms by hydrogen annealing," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 39, pp. 5033-5038, Sep 2000.
    [42] H. H. Yang, C. K. Chao, M. K. Wei, and C. P. Lin, "High fill-factor microlens array mold insert fabrication using a thermal reflow process," Journal of Micromechanics and Microengineering, vol. 14, pp. 1197-1204, Aug 2004.
    [43] S. Asvadurov, B. D. Coleman, R. S. Falk, and M. Moakher, "Similarity solutions in the theory of curvature driven diffusion along planar curves: I. Symmetric curves expanding in time," Physica D, vol. 121, pp. 263-274, Oct 1998.
    [44] S. T. Liu, L. Chan, and J. O. Borland, "Reaction kinetics of SiO2/Si(100) interface in H2 ambient in a reduced pressure epitaxial reactor," Journal of the Electrochemical Society, vol. 134, pp. C480-C480, Aug 1987.
    [45] W. H. Juan and S. W. Pang, "Controlling sidewall smoothness for micromachined Si mirrors and lenses," Journal of Vacuum Science & Technology B, vol. 14, pp. 4080-4084, Nov-Dec 1996.
    [46] M. Borselli, T. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express, vol. 13, pp. 1515-1530, 2005.
    [47] L.-W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, "High quality factor etchless silicon photonic ring resonators," Opt. Express, vol. 19, pp. 6284-6289, 2011.
    [48] G. T. Reed and C. E. Jason Png, "Silicon optical modulators," Materials Today, vol. 8, pp. 40-50, 2005.
    [49] V. R. Almeida, Q. F. Xu, and M. Lipson, "Ultrafast integrated semiconductor optical modulator based on the plasma-dispersion effect," Optics Letters, vol. 30, pp. 2403-2405, Sep 2005.
    [50] M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature, vol. 441, pp. 960-963, Jun 2006.
    [51] KoosC, VorreauP, VallaitisT, DumonP, BogaertsW, BaetsR, EsembesonB, BiaggioI, MichinobuT, DiederichF, FreudeW, and LeutholdJ, "All-optical high-speed signal processing with silicon-organic hybrid slot waveguides," Nat Photon, vol. 3, pp. 216-219, 2009.
    [52] L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt. Express, vol. 13, pp. 3129-3135, 2005.
    [53] S. Manipatruni, X. Qianfan, B. Schmidt, J. Shakya, and M. Lipson, "High Speed Carrier Injection 18 Gb/s Silicon Micro-ring Electro-optic Modulator," in Lasers and Electro-Optics Society, 2007. LEOS 2007. The 20th Annual Meeting of the IEEE, 2007, pp. 537-538.
    [54] L. Liao, A. Liu, J. Basak, H. Nguyen, M. Paniccia, D. Rubin, Y. Chetrit, R. Cohen, and N. Izhaky, "40 Gbit/s silicon optical modulator for highspeed applications," Electronics Letters, vol. 43, 2007.
    [55] O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express, vol. 12, pp. 5269-5273, 2004.
    [56] H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature, vol. 433, pp. 725-728, 2005.
    [57] L. Ansheng, R. Haisheng, R. Jones, O. Cohen, D. Hak, and M. Paniccia, "Optical amplification and lasing by stimulated Raman scattering in silicon waveguides," Lightwave Technology, Journal of, vol. 24, pp. 1440-1455, 2006.
    [58] R. W. Boyd, "Nonlinear Optics," 3rd ed: Academic Press, 2008.
    [59] H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express, vol. 14, pp. 1182-1188, 2006.
    [60] V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, "Parametric Raman wavelength conversion in scaled silicon waveguides," Lightwave Technology, Journal of, vol. 23, pp. 2094-2102, 2005.
    [61] D. Van Thourhout, C. R. Doerr, C. H. Joyner, and J. L. Pleumeekers, "Observation of WDM crosstalk in passive semiconductor waveguides," Photonics Technology Letters, IEEE, vol. 13, pp. 457-459, 2001.
    [62] R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in Silicon waveguides," Opt. Express, vol. 12, pp. 2774-2780, 2004.
    [63] R. Soref and B. Bennett, "Electrooptical effects in silicon," Quantum Electronics, IEEE Journal of, vol. 23, pp. 123-129, 1987.
    [64] M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion insilicon nanowaveguides," Opt. Express, vol. 15, pp. 12949-12958, 2007.
    [65] Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express, vol. 14, pp. 11721-11726, 2006.
    [66] G. P. Agrawal, "Nonlinear fiber optics ", 4th ed: Academic Press, 2007.
    [67] H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-i. Takahashi, and S.-i. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express, vol. 13, pp. 4629-4637, 2005.
    [68] A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express, vol. 14, pp. 4357-4362, 2006.
    [69] B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, "Raman-based silicon photonics," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 12, pp. 412-421, 2006.
    [70] R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, "Observation of Raman emission in silicon waveguides at 1.54 µm," Opt. Express, vol. 10, pp. 1305-1313, 2002.
    [71] R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, "Observation of stimulated Raman amplification in silicon waveguides," Opt. Express, vol. 11, pp. 1731-1739, 2003.
    [72] R. Espinola, J. Dadap, J. R. Osgood, S. McNab, and Y. Vlasov, "Raman amplification in ultrasmall silicon-on-insulator wire waveguides," Opt. Express, vol. 12, pp. 3713-3718, 2004.
    [73] L. B. Soldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," Journal of Lightwave Technology, vol. 13, pp. 615-627, Apr 1995.
    [74] C. H. Bae and F. Koyama, "Fabrication and characterization of hollow waveguide optical switch with variable air core," Optics Express, vol. 13, pp. 3259-3263, May 2005.
    [75] X. L. Jia, S. Q. Luo, and X. H. Cheng, "Design and optimization of novel ultra-compact SOI multimode interference optical switch," Optics Communications, vol. 281, pp. 1003-1007, Mar 2008.
    [76] S. L. Tsao, H. C. Guo, and C. W. Tsai, "A novel 1 x 2 single-mode 1300/1550 nm wavelength division multiplexer with output facet-tilted MMI waveguide," Optics Communications, vol. 232, pp. 371-379, Mar 2004.
    [77] D. Khalil and A. Yehia, "Two-dimensional multimode interference in integrated optical structures," Journal of Optics A: Pure and Applied Optics, vol. 6, pp. 137-145, Jan 2004.
    [78] H. Chen and D. T. K. Tong, "Two-dimensional symmetric multimode interferences in silicon square waveguides," IEEE Photonics Technology Letters, vol. 17, pp. 801-803, Apr 2005.
    [79] A. Yehia, K. Madkour, H. Maaty, and D. Khalil, "Multiple-imaging in 2-D MMI silicon hollow waveguides," IEEE Photonics Technology Letters, vol. 16, pp. 2072-2074, Sep 2004.
    [80] R. Bernini, E. De Nuccio, A. Minardo, L. Zeni, and P. M. Sarro, "2-D MMI devices based on integrated hollow ARROW waveguides," IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, pp. 194-201, Mar-Apr 2007.
    [81] M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, "3-D photonic circuit technology," IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, pp. 935-942, Jul-Aug 2002.
    [82] M. Will, J. Burghoff, S. Nolte, and A. Tuennermann, "Fabrication of three-dimensional photonics devices using femtosecond laser pulses," in Commercial and Biomedical Applications of Ultrafast Lasers III vol. 4978, 2003, pp. 147-154.
    [83] R. Ulrich, "Image formation by phase coincidences in optical waveguides," Optics Communications, vol. 13, pp. 259-264, 1975.
    [84] R. Ulrich and G. Ankele, "Self-imaging in homogeneous planar optical waveguides," Applied Physics Letters, vol. 27, pp. 337-339, 1975.
    [85] M. Bachmann, P. A. Besse, and H. Melchior, "General self-imaging properties in N × N multimode interference couplers including phase relations," Appl. Opt., vol. 33, pp. 3905-3911, 1994.
    [86] R. M. Jenkins, R. W. J. Devereux, and J. M. Heaton, "Waveguide beam splitters and recombiners based on multimode propagation phenomena," Opt. Lett., vol. 17, pp. 991-993, 1992.
    [87] A. Yehia and D. Khalil, "Design of a compact three-dimensional multimode interference phased array structures (3-D MMI PHASAR) for DWDM applications," IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, pp. 444-451, Mar-Apr 2005.
    [88] P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, "Optical bandwidth and fabrication tolerances of multimode interference couplers," Journal of Lightwave Technology, vol. 12, pp. 1004-1009, Jun 1994.
    [89] R. Ulrich and T. Kamiya, "Resolution of self-images in planar optical waveguides," Journal of the Optical Society of America, vol. 68, pp. 583-592, 1978.
    [90] D. F. G. Gallagher and T. P. Felici, "Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons," in Proceedings of SPIE San Jose, CA, USA 2003, pp. 69-82.
    [91] A. S. Sudbø, "Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides," Pure and Applied Optics, vol. 2, pp. 211-233, Sep 1993.
    [92] J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, "Silicon microtoroidal resonators with integrated MEMS tunable coupler," IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, pp. 202-208, Mar-Apr 2007.
    [93] J. Yao and M. C. Wu, "Bandwidth-tunable add-drop filters based on micro-electro-mechanical-system actuated silicon microtoroidal resonators," Opt. Lett., vol. 34, pp. 2557-2559, 2009.
    [94] C. L. Bellew, S. Hollar, and K. S. J. Pister, "An SOI process for fabrication of solar cells, transistors and electrostatic actuators," in Boston Transducers'03: Digest of Technical Papers, Vols 1 and 2, New York, 2003, pp. 1075-1079.
    [95] B. Jalali and S. Fathpour, "Silicon photonics," Journal of Lightwave Technology, vol. 24, pp. 4600-4615, Dec 2006.
    [96] R. Won and M. Paniccia, "Integrating silicon photonics," Nature Photonics, vol. 4, pp. 498-499, Aug 2010.
    [97] G. Cocorullo and I. Rendina, "Thermooptic modulation at 1.5 um in silicon etalon," Electronics Letters, vol. 28, pp. 83-85, Jan 1992.
    [98] D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, "Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure," Opt. Express, vol. 16, pp. 334-339, 2008.
    [99] D. T. Fuchs, H. B. Chan, H. R. Stuart, F. Baumann, D. Greywall, M. E. Simon, and A. Wong-Foy, "Monolithic integration of MEMS-based phase shifters and optical waveguides in silicon-on-insulator," Electronics Letters, vol. 40, pp. 142-143, Jan 2004.
    [100] T. Ikeda, K. Takahashi, Y. Kanamori, and K. Hane, "Phase-shifter using submicron silicon waveguide couplers with ultra-small electro-mechanical actuator," Optics Express, vol. 18, pp. 7031-7037, Mar 2010.
    [101] C. Shiang-Woei, L. Yunn-Shiuan, and C. Jeng-Tzong, "Computational study of the effect of finger width and aspect ratios for the electrostatic levitating force of MEMS combdrive," Journal of Microelectromechanical Systems, vol. 14, pp. 305-312, 2005.
    [102] M. C. M. Lee and M. C. Wu, "Variable bandwidth of dynamic add-drop filters based on coupling-controlled microdisk resonators," Optics Letters, vol. 31, pp. 2444-2446, Aug 2006.
    [103] W. N. Ye, D. X. Xu, S. Janz, P. Cheben, M. J. Picard, B. Lamontagne, and N. G. Tarr, "Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides," Journal of Lightwave Technology, vol. 23, pp. 1308-1318, Mar 2005.
    [104] M. Huang, "Stress effects on the performance of optical waveguides," International Journal of Solids and Structures, vol. 40, pp. 1615-1632, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE