簡易檢索 / 詳目顯示

研究生: 薛秀麗
Hsueh, Hsiu-Li
論文名稱: 構念位置於問卷設計的重要性
The Importance of Construct Position in Survey Design
指導教授: 雷松亞
Ray, Soumya
口試委員: 郭佩宜
Kuo, Pei-Yi
林福仁
Lin, Fu-Ren
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 服務科學研究所
Institute of Service Science
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 64
中文關鍵詞: 問卷設計脈絡效應構念排序效應距離反應偏差
外文關鍵詞: survey design, context effect, construct, order effect, distance, response bias
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 實驗問卷是社會科學領域中量測人類心理與行為的重要工具,通常以評估構念的多個項目組成。早先研究顯示,答者的作答對於項目的上下文與其排序十分敏感。本文針對問卷調查提出了相同的質疑,惟專注於檢驗以多項目分群的構念結構問卷,試圖釐清此類型問卷中,構念間是否也存在單項目結構問卷中的脈絡效應。具體而言,本研究意於探究問卷中的構念排序以及相關構念之間距是否會影響構念間相關性。我們發佈了多組內容相同的構念結構問卷僅調整其構念排序,藉此檢驗三種不同構念排序的影響——依序、逆序與混序。結果發現脈絡效應亦存在於構念間,不同構念排序會影響構念間相關性,逆序傾向於強化構念間的正相關性,而混序傾向於減弱其正相關性;然而,相關構念間相隔的遠或近並無發現影響構念間相關性。依據這些初步結果,我們認為依序是現階段最穩定且保守的構念排序方法。


    Empirical surveys in social sciences, usually composed of measurement items that measure constructs, are an essential tool for the assessment of the human mind and behavior. Prior research has warned that respondents’ responses are sensitive to the context and order of items. This study takes up the same question about surveys but asks if there are also context effects of item-groupings as constructs as well. Specifically, we investigate if construct order and the distance between constructs on survey instruments alter correlations between constructs. Three types of construct-ordering approaches were examined—forward, reversed, and mixed—by launching the same construct-based survey with different construct orders. The results suggest that reversed-order tends to make correlations of hypothesized relationships more positive and that mixed-order makes correlations more negative. However, the distance between constructs did not show effects on inter-construct correlations. From these preliminary results, we suggest that the forward order is relatively stable and the most conservative approach for now.

    摘 要-------------iv Abstract-------------v Acknowledgment-------------vi List of Tables-------------ix List of Figures-------------x Chapter 1. Introduction-------------1 Chapter 2. Construct Order Theory-------------4 2.1 Measurement Items-------------4 2.2 Constructs-------------6 2.3 Response Biases-------------8 Chapter 3. Methodology-------------10 3.1 Research Design-------------10 3.1.1 Deciding The Theoretical Model of Survey-------------10 3.1.2 Constructing Surveys-------------13 3.2 Research Platform Development-------------15 3.2.1 Spreadsheet-based Survey Design Platform: SurveyMoonbear-------------15 3.2.2 Feasibility & Reproducibility Enhancement-------------16 3.2.3 Auto-redirect Mechanism-------------17 3.3 Survey Administration-------------19 Chapter 4. Analysis-------------20 4.1 Survey Validity Tests-------------20 4.1.1 Convergent Validity-------------21 4.1.2 Discriminant Validity-------------23 4.2 Inter-construct Correlations Comparison-------------25 4.3 Multiple Regression Illustration-------------26 Chapter 5. Results-------------27 H1.1: Different orders of constructs affect the correlations between constructs-------------27 H1.2: Forward-order has higher inter-construct correlations compared to reversed-order-------------29 H1.3: Mixed-order has lower inter-construct correlations compared to grouped constructs (forward and reversed)-------------32 H2: As the distance between related constructs increases, their correlations will decrease-------------36 Chapter 6. Discussion-------------38 Chapter 7. Contributions-------------42 Chapter 8. Limitations & Future Work-------------43 Chapter 9. References-------------44 Appendix A-------------56 Appendix B-------------63

    Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In Action control (pp. 11-39). Springer, Berlin, Heidelberg.
    Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211.
    Ajzen, I. (2002). Constructing a TPB questionnaire: Conceptual and methodological considerations.
    Ajzen, I. (2006). Constructing a theory of planned behavior questionnaire.
    Ajzen, I. (2013). Theory of planned behaviour questionnaire. Measurement instrument database for the social science.
    Bagozzi, R. P., & Yi, Y. (2012). Specification, evaluation, and interpretation of structural equation models. Journal of the academy of marketing science, 40(1), 8-34.
    Bartneck, C., Duenser, A., Moltchanova, E., & Zawieska, K. (2015). Comparing the similarity of responses received from studies in Amazon’s Mechanical Turk to studies conducted online and with direct recruitment. PloS one, 10(4), e0121595.
    Baumeister, R. F. (1982). A self-presentational view of social phenomena. Psychological bulletin, 91(1), 3.
    Bradburn, N. M., & Mason, W. M. (1964). The effect of question order on responses. Journal of Marketing Research, 1(4), 57-61.
    Budd, R. J. (1987). Response bias and the theory of reasoned action. Social Cognition, 5(2), 95-107.
    Budd, R. J., & Spencer, C. P. (1986). Lay theories of behavioural intention: A source of response bias in the theory of reasoned action?. British Journal of Social Psychology, 25(2), 109-117.
    Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological bulletin, 56(2), 81.
    Capgemini & BNP Paribas. (2018, June). World Payments Report (WPR) 2018. Retrieved June 2019, from https://worldpaymentsreport.com/wp-content/uploads/sites/5/2018/10/World-Payments-Report-2018.pdf
    Carman, K. G., Chandra, A., Miller, C., Trujillo, M. D., Yeung, D., Weilant, S., ... & Acosta, J. D. (2016). Development of the Robert Wood Johnson Foundation National Survey of Health Attitudes.
    Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern methods for business research, 295(2), 295-336.
    Conner, M., & Norman, P. (2005). Theory of Planned Behaviour And Health Behaviour. In M. Conner and P. Norman (eds) Predicting Health Behaviour: Research and Practice with Social Cognition Models. Buckingham: Open University Press, 170-222.
    Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. psychometrika, 16(3), 297-334.
    Davis, F. D., & Venkatesh, V. (1996). A critical assessment of potential measurement biases in the technology acceptance model: three experiments. International Journal of Human-Computer Studies, 45(1), 19-45.
    Dawis, R. V. (1987). Scale construction. Journal of Counseling Psychology, 34(4), 481.
    DeMoranville, C. W., Bienstock, C. C., & Judson, K. (2015). Identifying the Accuracy of Service Quality Measures: The Effects of Question Order. In Assessing the Different Roles of Marketing Theory and Practice in the Jaws of Economic Uncertainty (pp. 77-81). Springer, Cham.
    DeNisi, A. S., & Pritchard, R. D. (1978). Implicit theories of performance as artifacts in survey research: A replication and extension. Organizational Behavior and Human Performance, 21(3), 358-366.
    Diener, E. (1994). Assessing subjective well-being: Progress and opportunities. Social indicators research, 31(2), 103-157.
    Dijkstra, T. (1983). Some comments on maximum likelihood and partial least squares methods. Journal of Econometrics, 22(1-2), 67-90.
    Dijkstra, T. K., & Henseler, J. (2015). Consistent partial least squares path modeling. MIS quarterly, 39(2).
    Feldman, J. M., & Lynch, J. G. (1988). Self-generated validity and other effects of measurement on belief, attitude, intention, and behavior. Journal of applied Psychology, 73(3), 421.
    Follmer, D. J., Sperling, R. A., & Suen, H. K. (2017). The role of MTurk in education research: Advantages, issues, and future directions. Educational Researcher, 46(6), 329-334.
    Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50.
    Fors, A., Ulin, K., Cliffordson, C., Ekman, I., & Brink, E. (2015). The Cardiac Self-Efficacy Scale, a useful tool with potential to evaluate person-centred care. European Journal of Cardiovascular Nursing, 14(6), 536-543.
    Gibson, C. O., Shapiro, G. M., Murphy, L. R., & Stanko, G. J. (1978, August). Interaction of survey questions as it relates to interviewer-respondent bias. In Proceedings of the Section on Survey Research Methods, American Statistical Association (pp. 251-256).
    Goodhue, D., & Loiacono, E. (2002, January). Randomizing Survey Question Order vs. Grouping Questions by Construct: An Empirical Test of the Impact on Apparent Reliabilities and Links to Related Constructs. In Proceedings of the 35th Annual Hawaii International Conference on System Sciences (HICSS'02)-Volume 8-Volume 8 (p. 254). IEEE Computer Society.
    Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: updated guidelines. Industrial management & data systems, 116(1), 2-20.
    Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the academy of marketing science, 43(1), 115-135.
    Hernández-Morcillo, M., Bieling, C., Bürgi, M., Lieskovský, J., Palang, H., Printsmann, A., ... & Plieninger, T. (2017). Priority questions for the science, policy and practice of cultural landscapes in Europe. Landscape ecology, 32(11), 2083-2096.
    Huang, F. L., & Cornell, D. G. (2015). The impact of definition and question order on the prevalence of bullying victimization using student self-reports. Psychological Assessment, 27(4), 1484-1493.
    Huang, F. L., & Cornell, D. G. (2016). Question order affects the measurement of bullying victimization among middle school students. Educational and psychological measurement, 76(5), 724-740.
    Isaac, O., Abdullah, Z., Ramayah, T., Mutahar, A. M., & Alrajawy, I. (2018). Integrating User Satisfaction and Performance Impact with Technology Acceptance Model (TAM) to Examine the Internet Usage Within Organizations in Yemen. Asian Journal of Information Technology, 17(1), 60-78.
    John, O. P., & Benet-Martinez, V. (2000). Measurement: Reliability, construct validation, and scale construction. Handbook of research methods in social and personality psychology. Cambridge: Cambridge University Press.
    Kessler, R. C., Andrews, G., Colpe, L. J., Hiripi, E., Mroczek, D. K., Normand, S. L., ... & Zaslavsky, A. M. (2002). Short screening scales to monitor population prevalences and trends in non-specific psychological distress. Psychological medicine, 32(6), 959-976.
    Kim, J. (2015). How to choose the level of significance: a pedagogical note.
    Kooij, D. T., Kanfer, R., Betts, M., & Rudolph, C. W. (2018). Future time perspective: A systematic review and meta-analysis. Journal of Applied Psychology, 103(8), 867.
    Kopcha, T. J., Ottenbreit-Leftwich, A., Jung, J., & Baser, D. (2014). Examining the TPACK framework through the convergent and discriminant validity of two measures. Computers & Education, 78, 87-96.
    Krasnova, H., Widjaja, T., Buxmann, P., Wenninger, H., & Benbasat, I. (2015). Research note—why following friends can hurt you: an exploratory investigation of the effects of envy on social networking sites among college-age users. Information systems research, 26(3), 585-605.
    Labovitz, S. (1968). Criteria for selecting a significance level: A note on the sacredness of. 05. The American Sociologist, 220-222.
    Lasorsa, D. L. (2003). Question-order effects in surveys: The case of political interest, news attention, and knowledge. Journalism & Mass Communication Quarterly, 80(3), 499-512.
    Linek, S. B. (2017). Order effects in usability questionnaires. Journal of Usability Studies, 12(4), 164-182.
    McFarland, S. G. (1981). Effects of question order on survey responses. Public Opinion Quarterly, 45(2), 208-215.
    Montano, D. E., & Kasprzyk, D. (2015). Theory of reasoned action, theory of planned behavior, and the integrated behavioral model. Health behavior: Theory, research and practice, 95-124.
    Moore, D. W. (2002). Measuring new types of question-order effects: Additive and subtractive. The Public Opinion Quarterly, 66(1), 80-91.
    Muthén, B. O. (2002). Beyond SEM: General latent variable modeling. Behaviormetrika, 29(1), 81-117.
    Nathanael, D., Mosialos, S., & Vosniakos, G. C. (2016). Development and evaluation of a virtual training environment for on-line robot programming. International Journal of Industrial Ergonomics, 53, 274-283.
    Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric Theory 3rd edition, McGraw-Hill Inc. New York.
    Pew Research Center (n.d.). Questionnaire design. Retrieved June 2019, from https://www.pewresearch.org/methods/u-s-survey-research/questionnaire-design/
    Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of applied psychology, 88(5), 879.
    Porzio, G. C., & Ragozini, G. (2000). Peeling multivariate data sets: a new approach. Quad Stat, 2, 85-99.
    Previte, J., Russell‐Bennett, R., & Parkinson, J. (2015). Shaping safe drinking cultures: Evoking positive emotion to promote moderate‐drinking behaviour. International Journal of Consumer Studies, 39(1), 12-24.
    Robinson, M. A. (2018). Using multi‐item psychometric scales for research and practice in human resource management. Human Resource Management, 57(3), 739-750.
    Rousu, M. C., O'Connor, R., & Bansal-Travers, M. (2017). Smokers' BMI and perceived health: Does the order of questions matter?. Preventive medicine reports, 5, 140-143.
    Saunders, C., Wiener, M., Klett, S., & Sprenger, S. (2017). The impact of mental representations on ICT-related overload in the use of mobile phones. Journal of Management Information Systems, 34(3), 803-825.
    Saylor, M. M., Somanader, M., Levin, D. T., & Kawamura, K. (2010). How do young children deal with hybrids of living and non‐living things: The case of humanoid robots. British Journal of Developmental Psychology, 28(4), 835-851.
    Schwarz, N. (1999). Self-reports: how the questions shape the answers. American psychologist, 54(2), 93.
    She, W. Y. (2018). 在線上問卷中評定量表如何影響填答者追求最低要求滿意結果的行為 (How Rating Scales Affect Survey Satisficing Behavior in Online Surveys). 清華大學服務科學研究所學位論文, 1-45.
    Shukri, M., Jones, F., & Conner, M. (2016). Work Factors, Work–Family Conflict, the Theory of Planned Behaviour and Healthy Intentions: A Cross‐Cultural Study. Stress and Health, 32(5), 559-568.
    Shuster, D. R. (2018). Teaching Hope: The Influence of College Faculty Teaching Practices on Undergraduate Student Success (Doctoral dissertation, Frostburg State University).
    Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of Cronbach’s alpha. Psychometrika, 74(1), 107.
    Skipper, J. K., Guenther, A. L., & Nass, G. (1967). The sacredness of. 05: A note concerning the uses of statistical levels of significance in social science. The American Sociologist, 16-18.
    Smeulders, E. S., van Haastregt, J. C., van Hoef, E. F., van Eijk, J. T., & Kempen, G. I. (2006). Evaluation of a self-management programme for congestive heart failure patients: design of a randomised controlled trial. BMC health services research, 6(1), 91.
    Steenkamp, J. B. E., De Jong, M. G., & Baumgartner, H. (2010). Socially desirable response tendencies in survey research. Journal of Marketing Research, 47(2), 199-214.
    Strack F., Martin L. L., Schwarz N. (1988). Priming and communication: Social determinants of information use in judgments of life satisfaction. European Journal of Social Psychology, 18, 429-442.
    Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach's alpha. International journal of medical education, 2, 53.
    Thiese, M. S., Ronna, B., & Ott, U. (2016). P value interpretations and considerations. Journal of thoracic disease, 8(9), E928.
    Thomas, H. (1982). IQ, interval scales, and normal distributions. Psychological Bulletin, 91(1), 198.
    Tukey, J. W. (1977). Exploratory data analysis. Reading, Massachusetts: Addison-Wesley Pub. Co.
    Veenhoven, R. (2013). Conditions of happiness. Springer Science & Business Media.
    Wilson, V., & Lankton, N. (2012). Some unfortunate consequences of non-randomized, grouped-item survey administration in IS research.
    Wolf, H. P. (2018). Package ‘aplpack’ version 1.3.2. Retrieved June 2019, from https://cran.r-project.org/package=aplpack
    Worldpay. (2018). Global & Regional Trends. Retrieved June 2019, from https://worldpay.globalpaymentsreport.com/#/global-and-regional
    Yadav, R., & Pathak, G. S. (2017). Determinants of consumers' green purchase behavior in a developing nation: Applying and extending the theory of planned behavior. Ecological Economics, 134, 114-122.

    QR CODE