簡易檢索 / 詳目顯示

研究生: 吳苑娟
Wu, Yuan-Chuan
論文名稱: 肌電訊號的處理、判讀與回授應用
EMG Signal Processing, Analysis and Feedback Application
指導教授: 陳建祥
Chen, Jian-Shiang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 43
中文關鍵詞: 肌電訊號
外文關鍵詞: EMG
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 伴隨著人體肌肉的收縮,肌電訊號會與收縮程度成正相關,並可在人體皮膚表面量測之。除肢體完全殘缺者外,運用此種肌肉收縮伴隨肌電訊號產生的特性,可以用來設計輔具的輸出參考,使輔具可以即時輸出輔助力矩於特定部位。因而此方向的輔具設計屬於「強化使用者體能型」,而非為肢體殘缺者設計的「義肢型」。
    本實驗室先前有關肌電訊號應用於人體輔具之研究是以「壓力鞋-角度計模組」配合肌電訊號的運算結果,兩者互相輔助,即時對使用者作出回饋。但亦無法跳脫模組化之應用,僅能對單一動作識別。故本文藉由肌電訊號的本質、反動力學及肌肉機械學模型之探討,確立下肢肌電訊號與人體膝蓋力矩具有相關性,藉由Adaptive Neuro-Fuzzy Inference System(ANFIS)建立下肢肌電訊號與人體膝蓋力矩之模型,將肌電訊號即時換算輔具的參考力矩,給予輔具控制命令施加於膝蓋上,以期令使用者在任何膝蓋彎曲角度下,感覺較未穿輔具時輕鬆。 又反動態學之應用過於複雜,即使以簡化之靜態反動力學推算膝蓋力矩亦不夠直觀,因此本文設計一線性扭簧-角度計模組來推算力矩,作為模型學習之力矩輸入。最後輔以實驗來驗證其可行性以及實際與輔具整合之成果。


    第一章 緒論 1-1 研究背景與動機 1-2 文獻回顧 1-3 本文架構 第二章 問題描述 2-1 肌電訊號之發生與特性 2-2 訊號之觀察與假設 2-3 訊號分析之方法 2-4 系統之動態描述 2-5 適應性類神經模糊模型(ANFIS) 2-6 結語 第三章 實驗系統架構 3-1 實驗架構與流程 3-1-1 ANFIS模型之建立 3-1-2 EMG訊號導入輔具之即時應用 3-2 實驗設備介紹 3-2-1 EMG 感測器 3-2-2 前端訊號放大電路 3-2-3 電腦與控制介面 3-2-4 彈簧 3-2-5角度計 3-2-6 測試支架 3-3 實驗環境 3-4 實驗軟體簡介 3-5 結論 第四章 實驗結果 4-1 實驗目的 4-2 實驗設計 4-3 實驗結果 4-3-1 ANFIS模型建立與測試 4-3-2 肌電訊號導入輔具應用 (a) 蹲站實驗 (b) 坐站實驗 (c)上樓梯實驗 (d) 下樓梯實驗 4-4 結果分析 第五章 本文貢獻及未來展望 5-1 結論 5-2 本文貢獻 5-3未來展望 參考文獻

    [1]Jun Ding, S. Anthony, Wexler and Stuart A, “Development of a Mathematical Model that Predicts Optimal Muscle Activation Patterns by Using Brief Trains,” Journal of Applied Physiology, pp. 917-925, 2000.
    [2]E. Eisenberg, TL. Hill and Y. Chen, “Cross-Bridge Model of Muscle-Contraction Quantitative-Analysis,” Biophyscial Journal, pp. 195-227,1980.
    [3]Dimitrije Stamenovic´, Be´la Suki,1 Ben Fabry, Ning Wang and Jeffrey J. Fredberg, “Rheology of Airway Smooth Muscle Cells is Associated with Cytoskeletal Contractile Stress,” Journal of Applied Physiology, vol. 96, pp. 1600-1605, 2004.
    [4]C. W. J. Oomens, M. Maenhout, C. H. van Oijen, M. R. Drost and F. P. Baaijens, “Finite Element Modelling of Contracting Skeletal Muscle,” Philosophical Transactions of The Royal Society of London Series B-Biological Science, pp. 1453-1460,2003.
    [5]K. Kiguchi , T. Tanaka , T. Fukuda, “Prediction of Dynamic Tendon Forces from Electromyographic Signals: An Artificial Neural Network Approach,” Journa of Neuroscience Method, vol. 78, pp. 65-74,1997.
    [6]M. M. Liu, W. Herzog and Hans H. C. M. Savelberg, “Dynamic Muscle Force Predictions from EMG: An Artificial Neural Network Approach,” Journal of Electromyography and Kinesiology, vol. 9, pp. 391-400,1999.
    [7]P. Cavanagh and P. Komi, “Electromechanical Delay in Human Skeletalmuscle under Concentric and Eccentric Contractions,” Eur. Journal of Applied Physiology, vol. 42, no. 3, pp. 159-163, 1979.
    [8]S. Zhou, D. Lawson, W. Morrison and I. Fairweather, “Electromechanical Delay in Isometric Muscle Contractions Evoked by Voluntary, Reflex and Electrical Stimulation,” Eur. Journal of Applied Physiology, vol. 70, no. 2, pp. 138-145,1995.
    [9]D. P. Ferris, K. E. Gordon, G. S. Sawicki, and A. Peethambaran, “An Improved Powered Ankle-Foot Orthosis Using Proportional Myoelectric Control,” Gait Posture, vol. 23, no. 4, pp. 425-428, 2006.
    [10]C. R. Kinnaird and D. P. Ferri, “Medial Gastrocnemius Myoelectric Control of a Robotic Ankle Exoskeleton,” IEEE Transactions on Neural Systems and Rehabilitation, vol. 17, no. 1, pp. 31-37, 2009.
    [11]S. Lee and Y. Sankai, ”Power Assist Control for Walking Aid with HAL-3 Base on EMG and Impedance Adjustment Around Knee Joint,” IEEE Intelligent Robots and Systems, pp. 1499-1504, 2002.
    [12]K. Kiguchi , T. Tanaka , T. Fukuda, “Neuro-Fuzzy Control of a Robotic Exoskeleton with EMG Signals,” IEEE Transactions on Fuzzy Systems, vol. 12, no. 4, pp. 481-490, 2004.
    [13]C. Fleischer and G. Hommel, “A Human–Exoskeleton Interface Utilizing Electromyography,” IEEE Transactions on Robotics, vol. 24, no. 4, pp. 872-882, 2008.
    [14]D. G. Lloyd and T. F. Besier, “An EMG-Driven Musculoskeletal Model to Estimate Muscle Forces and Knee Joint Moments in VIVO,” Journal of Biomechanics, pp. 765-776, 2003.
    [15]C. Fleischer, Andreas Wege, K. Kondak and G. Hommel, “Application of EMG Signals for Controlling Exoskeleton Robots,” Biomed Tech, vol. 51, pp. 314-319, 2006.
    [16]Human Physiology–muscle http://people.eku.edu/ritchisong/RITCHISO/301notes3.htm
    [17]Winter David A. , Biomechanics and Motor Control of Human Movement. 3rd Ed. , Hoboken, New Jersey: John Wiley & Sons, 2005.
    [18]Y. John and L. Reza, Fuzzy Logic : Intelligence, Control, and Information. Upper Saddle River, N.J. : Prentice Hall, 1999.

    [19]Jyh-Shing Roger Jang, “ANFIS: Adaptive-Network-Based Fuzzy Inference System,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, no. 3, pp.665-685, 1993.
    [20]江耿鋒,胡威志,可攜式腳底壓力量測系統之研發,先進工程學刊,台灣,2008.
    [21]陳宗毅,大腿肌電訊號用於動作辨識之應用,碩士論文,國立清華大學動力機械系,台灣,2007.
    [22]林南寰,以肌電訊號為基礎之動力輔具設計與實作,碩士論文,國立清華大學動力機械系,台灣,2009.
    [23]許承志,穿戴式下肢動力輔具設計與實作,碩士論文,國立清華大學動力機械系,台灣,2010.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE