研究生: |
謝孝基 Hsieh, Hsiao-Chi |
---|---|
論文名稱: |
具矽鍺超晶格通道之MOS元件的電與材料特性研究 The Study of Electrical and Material Characteristics in MOSFET Devices with Si/Ge of Superlattice Channel |
指導教授: |
張廖貴術
Chang-Liao, Kuei-Shu |
口試委員: |
趙天生
蔡銘進 張廖貴術 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 133 |
中文關鍵詞: | Si/Ge Superlattice 、MOS 、MOSFET 、PIII |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
隨著電晶體的特性改善,尺寸也同時越來越小,在未來應用在CMOS元件技術中等效氧化層厚度(EOT)甚至被要求縮小到1.0 nm以下。因此使用high-k材料來減低漏電劉,但即便使用high-k材料仍會遇到一些技術性的困難,例如像charge traping和遷移率惡化…等問題。
因此,希望藉由使用介面處理以及能提供高遷移率通道的含鍺半導體材料來克服上述的因素;因為在載子遷移率中,以純鍺本身對矽而言,電子提升兩倍至於電洞可以提升至四倍,故對於元件傳輸可以大大得到改善。但是由於鍺的不耐高溫在400℃下產生易揮發的氣體且容易水解,對於元件的電特性會degradation,所以勢必要用其它鈍化方式來抑制鍺擴散並且維持含鍺通道元件的電特性。
為了提升含鍺通道元件特性,本論文一開始使用UHVCVD週期性堆疊矽鍺虛擬基板,其後在基板上用ALD沉積HfO2作為介電層,並在上面鍍上1nm的Ti Cap。週期性的矽鍺堆疊可得一濃度高的矽鍺通道,且此元件的基板介面特性與矽基板相似,可和傳統Si元件的製程相容。在載子遷移率部分,使用矽鍺堆疊之虛擬基板的元件也有得到改善,我們發現在矽鍺堆疊結構之PMOS載子遷移率會比純矽基板下來的好。
有HfO2的元件在Subthreshold Swing部分為84mv/dec,在EOT的部分也可控制在1nm左右,而其他基本電性如Gm, Id等也以單層HfO2的元件較佳。
接著繼續使用UHVCVD堆疊矽鍺虛擬基板,並在矽鍺虛擬基板上作參數調變。首先對矽鍺重覆堆疊於氮化鉿(TaN)元件進行研究,期望利用不同矽鍺堆疊的厚度來提升其元件基板的鍺濃度,以提升載子遷移率。接著為了進一步得到提升元件電特性與可靠度,針對ALD成長之HfO2為介電層,除了使用不同矽覆蓋層的厚度的方法,也使用電漿浸潤式離子佈植(PIII)的方式,從閘極上方摻雜N至介電層中。並以2.5KeV、10分鐘下操作,使元件可靠度能得到進一步的提升。
參考文獻
[1] Dieter K. Schroder, “Semiconductor Material and Device Characterization”, third edition, 2006.
[2] J. H. Stathis, et al, IEEE IEDM, Vol. 71, p. 167, 1998
[3] Yuan Taur, et al., First published 1998, Reprinted, p.161, 1999.
[4] M. Houssa, et al, Material Science and Enginerring R, p. 37, 2006
[5] H. S. Momose, et al., IEEE Trans. Electron Devices, vol. 43, p.1223, Aug. 1996
[6] S, Saito, et al., IEEE IEDM, p. 797, 2003
[7] R. People , et al., App. Phys. Lett, Vol. 47, p. 322, 1985
[8] R. Zhang, North Carolina State University, Ph. D., p.1, 2006
[9] A. I. Kingon, et al, Nature 406, p. 1032, 2000
[10] Hiroaki Arimura, et al., Appl. Phys. Lett. 92,212902 ,2008
[11] C. Claeys, et al., IEEE IEDST, 2007
[12] S. H. Bae, et al., IEEE Electron Device Lett. , vol 24, no. 9, 2003
[13] T. Takahashi, et al., IEEE IEDM, p. 697, 2007
[14] 杜立偉,國立清華大學工程與系統科學系,2009
[15] Yoshiki Kamata, Materials today, Vol. 11, p.30,2008
[16] Sachin Joshi, et al.,IEEE Electron Device Letters, Vol. 28, p. 308, 2007
[17] W. P. Bai, et al., IEEE Electron Device Letters, Vol. 26, p.378, 2005
[18] H.-S. P. Wong, IBM J. Res. & Dev, Vol. 46, p. 133, 2002
[19] W. J. Zhu et al., IEEE Electron Device Letters, Vol.25, NO.2, p.89, 2004
[20] Y.H Wu, Deep-Submicron-Devices Chapter 4, NTHU_2007
[21] H.-S. Petitdidier, et al., Thin Solid Films,Vol. 476, p. 51, 2005
[22] D.C. Houghton, J. Appl. Phys, Vol. 70, p. 2136, 1991
[23] S. I. Takagi et al., IEEE Trans. Electron Devices, Vol. 41, NO.12, p. 2357, 1994
[24] T.P.Ma, IEEE Trans. Electron Device, vol. 45, p. 680, March 1998.
[25] R. Woltjer, et al., IEEE Trans. Electron Devices, Vol. 42, p. 109, 1995
[26] Jungwoo Oh et al.,“Improved Electrical Characteristics of Ge-on-Si Field-Effect Transistors With Controlled Ge Epitaxial Layer Thickness on Si Substrate”, Thin Solid Films, Vol. 336, p. 319, 1998
[27] Erich Kasper et al.,“New Virtual Substrate Concept for Vertical MOS Transistors”, IEEE Electron Device Letters, Vol. 28, p. 1044, 2
[28] Tung Ming Pan, et al., Appl. Phys. Lett. vol.78, p.1439
[29] C. D. Young, et al., IEEE Device and Materail Reliability, Vol.6, p.123,2006.
[30] S. Mahapatra, et al., IEEE Electric Device, Vol. 53, pp.1583, 2006.
[31] G.D.Wilk, et al., Journal of Applied Physics, vol.89,p.5243,2001
[32] C.S. Kang, et al., IEEE Transactions on Electron Devices, Vol 51, p. 220-7, 2004
[33] X. Wang, et al., IEEE Transactions on Electron Devices, Vol51,p. 1798-4, 2004
[34] C.L. Cheng, et al., Appl. Phys. Lett. Vol86, p.212902-3, 2005
[35] D.M. Fleetwood, IEEE Transcactions on Nuclear Science, Vol 43, p.779-6, 1996
[36] X. Yu, et al., IEEE Electron Device Lett. Vol25, p.501-3, 2004
[37] S. Mudanai, et al., IEEE Electron Device Lett. ,Vol 23, p.728-0,2002
[38] D.K. Schroder, John wiley & Sons, p.337-8,1998
[39] Chee Wee Liu, et al., IEEE Circuit & Devices Magazine, 2005
[40] Heyns, et al., VLSI Technology, Systems, and Applications, International Symposium, p. 247, 2003
[41] Erich Kasper et al., Thin Solid Films, Vol. 336, p. 319, 1998
[42] T.Yamanka, et al.,IEEE Electron Device Lett., Vol 17, p.178-0, 1996
[43] W.K. Chim et al., J. Appl. Phys., Vol93, p.4788-3, 2003
[44] Chia Ching Yeo, et al., IEEE Electron Device Letters, Vol. 26, NO. 10, 2005
[45] C.D. Young, et al., IIRW Final Report, 2005
[46] O. A. Mironov, et al. IEEE European Solid-State Device Research,p.557 ,2004
[47] C.X.Li, et al., Microelectronics Reliability, Volume 48, Issue 4, P. 526 , 2008
[48] C.X.Li, et al., Solid-State Electronics, Volume 54, Issue 7, p. 675 , 2010
[49] 蔡文發,“電漿源原理與應用之介紹”,物理雙月刊第二十八卷二期, 2006
[50] S.M. Sze,. Second Ed. July
[51] Gareth Nicholas, et al., IEEE Electron Device Lett., Vol 28, p.825
[52] S. Balakumar, et al., “Fabrication of thickl SiGe on insulator ( Si0.2Ge0.8OI ) by condensation of SiGe/Si superlattice grown on silicon on insulator”, Appl. Phys. Lett., Vol. 90, p.192113, 2007
[53] Jeff Huang, et al., “Mechanisms Limiting EOT Scaling and Gate Leakage Currents of High-k/Metal Gate Stacks Directly on SiGe”, IEEE Electron Device Lett., Vol. 30, p.285, 2009
[54] J. P. Dismukes, etal., “Latice Parameter and Density in Germanium-Silicon Alloys.”, J. Physical Chemistry, 68, p. 3021, 1964
[55] L. Wang, K. Xue, et al., “Effects of Plasma Immersion Ion Nitridation on Dielectric Properties of HfO2”, Appl. Phys. Lett., Vol. 90, p.122901, 2007
[56] Massalski, Thaddeus B. ed., “Binary Alloy Phase Diagrams”, Second Ed., 1990