研究生: |
林慧芬 |
---|---|
論文名稱: |
非線性邊界值問題分歧點計算及其解路徑延拓 The Continuation of Solution Paths aned The Computation of Branching Points of A Nolinear Boundary-Valued Problem |
指導教授: | 簡國清 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 159 |
中文關鍵詞: | 分歧點 、轉彎點 、打靶法 、牛頓迭代法 、隱函數定理 、解分支 、割線猜測法 、虛擬弧長延拓法 、分歧圖 |
外文關鍵詞: | Bifurcation point, Turning point, Shooting method, Newton’s interative method, Implicit function theorem, Solution branches, Secant -predictor method, Pseudo-arclength continuation method, Bifurcation diagram |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要在探討非線性邊界值常微分方程組之轉彎點,分歧點與其解分支結構.
首先,我們利用打靶法及牛頓迭代法,來推導計算出分歧點或轉彎點.並以隱函數定理為基礎,運用Liapunov-schmidt降階法,虛擬弧長延拓法,割線猜測法及牛頓迭代法等數值方法,來延拓出所有通過分歧點的解分支路徑.
最後,我們改變其中一參數,而將其他參數固定,分別求得分歧現象,分歧點與轉彎點的變化.
This thesis investigates the turning points, bifurcation points and solution branches of nonlinear ordinary differential equations with the boundary-values.
First, we use shooting method and newton’s interative method to calculate the bifurcation points or turning points.We use implicit function theorem as the foundation to quote the numerical method of the Liapunov-Schmidt reduction method, pseudo-archength continuation method, secant-predictor method, and Newton’s interative method,to continue all solution branches from bifurcation points.
Finally, we change one of the parameters and fix the others to find the bifurcation phenomenon, and the changes of bifurcation points and turning points.
[1] Bellman,R. and Kalaba,R., Quasilinearization and
Non-Linear Boundary Value Problems, American Elsevier, New
York, 1965.
[2] Collatz, E. A. and Levinson, N., Funktionalanalysis and
Numerische Mathematik, Springer-Verlag, Berlin, 1964.
[3] Crandall,M.G., An Introduction to Constructive Aspects of
Bifurcation Theorem, Academic Press, pp.1-35, 1977.
[4] Crandall, M.G. and Rabinowitz, P. H., Mathematical Theory
of Bifurcation,Bifurcation Phenomena in Mathematical
Physics and Related Topics, NATO Advanced Study Institute Series, 1979.
[5] Crandall,M.G., An Introduction to Constructive Aspects of
Bifurcation Theorem, Academic Press, pp.1-35, 1977.
[6] Fox, L., The Numerical Solution of Two-Point Boundary
Problems in Ordinary Differential Equations, Clarendon
Press, Oxford, 1957.
[7] Goodman, T. R. and Lance, G. N., Math Tables and Other Aids
to Comput, X(54),82, 1956.
[8] Iooss,G and Joseph,D.D., Elementary Stability and Bifurcation Theory, Spring-Verleg, 1989.
[9] Keller,H.B., in " Recent Advances in Numerical Analysis ", Academic Press, New York, pp.73, 1978.
[10] Keller,H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory Academic Press, pp.359-384, 1977.
[11] Keller,H.B., Lectures on Numerical Methods in Bifurcation
Problems, Springer-Verlag, 1987.
[12] Kubiček,M., Evalution of Branching Points for Nonlinear
Boundary-Value Problems Based on the GPM Technique, Applied Mathematics and Computation 1, pp.341-352, 1975.
[13] Kubiiček,M. and Hlavaček,V., General Parameter Mapping Technique-A Procedure for Solution of Non-linear Boundary Value Problems Depending on an Actual Paroblems, J. Inst. Maths Applics 12, pp.287-293, 1973.
[14] Kubiček,M. and Marek,M., Computational Methods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York, 1983.
[15] Küpper,T., Mittelmann,H.D. and Weber,H.(eds.), Numerical Methods for Bifurcation Problems, Birkhäuser, Basel, 1984.
[16] Milan Kubiček and Alois Klič, Direction of Branches Bifurcation at a Bifurcation Point. Determination of Starting Points for a Continuation Algorithm, Applid Mathematics and Computation 13, pp.125-142, 1983.
[17] Rheinboldt,W.C., Numerical Analysis of Parameterized Nonlinear Equations, Wiley, New York.
[18] Wacker,H.(ed),Continuation Methods, Academic Press, New York, 1978.