簡易檢索 / 詳目顯示

研究生: 張智期
Chang, Chih-Chi
論文名稱: 熱動式壓縮機之系統模擬
A System Simulation of Thermal Compressor
指導教授: 陳理定
Chen, Li-Ting
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 86
中文關鍵詞: 熱壓縮機史特靈循環
外文關鍵詞: thermal compressor, stirling cycle
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱動式壓縮機的工作原理類似於史特靈引擎但與理想的史特靈循環在性能上仍有些許的差別,熱壓縮機主要以熱能提高系統內氣體的壓力並配置適當的進氣閥門及排氣閥門以達成低壓氣體導入高壓流體排出的效果。
    本文主旨在於以節點分析法採用文獻[1]的模式建立一套熱壓縮機系統的模型,將能量方程式中造成溫度變化的各項因素分開處理已達到穩定的數值分析。在系統加熱區及散熱區考慮氣體與金屬壁面熱傳的發生有別於以往以等溫及絕熱兩種極端的假設,此模擬結果能直接的表示出系統內的循環現象。
    經由模擬分析而得的結果顯示出系統各元件尺寸的設計對於系統循環的運轉性能具有相當大的影響力。此外系統選用的工作流體與系統曲柄的轉速必須互相配合,良好的組合可使系統達到極佳的運轉性能,而過分的提高曲柄的運轉速度可能導致整個系統完全喪失效果。


    Thermal compressor is a member of the Stirling family of thermodynamic devices, but differs from such devices inasmuch as it uses thermal energy to compress gas rather than to produce shaft work. Compression is achieved by fitting inlet and exhaust valves to the working spaces, and permitting gas with the same type as working fluid to be induced at a low pressure and exhausted at a higher pressure in a quasi-continuous manner.
    The scope of this research uses Nodal Analysis Method to establish the mathematical model of thermal compressor. This model decouples three processes that contribute to the temperature change in the energy equation and solves for the temperature change in each process respectively in order to avoid numerical instability problems. This model differs from the two extreme assumptions, isothermal and adiabatic processes that were used to assuming in the working spaces, in calculating the temperature change in the working spaces and considering the heat transfer between gas and metal of the system. Using this model to analyze the thermal compressor system can get the result of cycle phenomenon directly.
    The result of analyzing this simulation shows that each component size designed of the system influence its performance significantly. In addition, this result also tells us that choosing working fluid compressed and using rotational speed of crank must cooperate with each other well. A good cooperation will accomplish the perfect performance of the system. On the other hand, rising excessively rotational speed of crank will make the system failed.

    摘 要 I ABSTRACT II 誌謝 III 目 錄 IV 圖表目錄 VIII 符號說明 XI 第一章 前言 1 第二章 文獻回顧 3 2-1 熱壓縮機的發展 3 2-2 數學模型的演進 4 2-3 研究目的 8 第三章 理論分析 9 3-1 本模型的描述 9 3-2 本文所使用的假設 10 3-3 狀態方程式 11 3-4 數值方法 13 3-4-1 數值積分法 15 3-4-2 壓力變化造成之溫度變化 16 3-4-3 混合造成之溫度變化 17 3-4-4 熱傳造成之溫度變化 17 第四章 數學模型的建立 19 4-1 計算壓力及溫度變化 19 4-2 計算質量分佈 19 4-3 計算質量流率 20 4-3-1 介面的質量流率 20 4-3-2 閥門控制的流率 20 4-4 計算混合造成之溫度變化 21 4-4-1 介面溫度 21 4-4-2 計算混合造成之溫度變化 23 4-5 計算熱傳係數 23 4-5-1 加熱器及散熱器的熱對流係數 24 4-5-2 再生回熱器的熱對流係數 25 4-5-3 加熱區的熱傳係數 26 4-5-4 散熱區的熱傳係數 27 4-6 計算熱傳造成之溫度變化 28 4-7 計算回熱器網目溫度 28 4-8 計算熱傳導及排換器穿梭造成的熱損 29 4-9 計算系統循環輸入熱及輸出熱 30 4-10 計算壓縮功及功率 30 4-11 熱壓縮機性能參數 30 4-12 計算各控制體積的壓降 31 4-13 程式模擬與計算流程 34 第五章 結果與討論 35 5-1 系統所使用的元件參數 35 5-2 系統循環現象分析 35 5-2-1 系統體積及壓力變化 36 5-2-2 系統壓降及流率變化 36 5-2-3 散熱區及加熱區的溫度變化 37 5-2-4 系統進排氣量的變化 38 5-2-5 計算結果 38 5-3 與等溫和絕熱模型比較分析 39 5-3-1 容積效率 39 5-3-2 無因次輸入熱 40 5-3-3 熱效率 41 5-4 曲柄轉動頻率對系統的影響 41 5-5 改變工作流體 43 第六章 結論與建議 46 6-1 結論 46 6-2 建議 47 參考文獻 48

    1.Roy Tew, Kent Jefferies & David Miao, “A Stirling Engine Computer Model for Performance Calculation,”DOE/NASA/1011-78/24.
    2.J. E. Cairelli, L. G. Thieme & R. J. Walter, “Initial Test Results with A Single-Cylinder Rhombic-Drive Stirling Engine,” DOE/NASA/1040-78/1.
    3.Roy Tew, Jr., L. G. Thieme & David Miao, “Initial Comparison of Single Cylinder Stirling Engine Computer Model Predictions with Test Results,” DOE/NASA/1040-78/30.
    4.Bush, V., U.S. Patents 2,127,286, and 2,175,376.
    5.J. C. Moise, R. J. Faeser & V. F. Russo, “Thermocompressor-Powered Artificial Heart Assist System,” Proceedings of the 11th IECEC, pp. 143-149, 1976.
    6.J. C. Moise & R. J. Faeser, “Thermocompressor Powered Artificial Heart Assist System,” Proceedings of the 12th IECEC, American Nuclear Society, La Grange, I11., pp. 112-118, 1977.
    7.S. B. Horn, M. E. Lumpkin & B. T. Walters, “Pneumatically Driven Split Cycle Cryogenic Refrigerator,” Advances in Cryogenic Engineering, Vol. 19, pp. 216-219, 1974.
    8.T. Finkelstein, “Generalized Thermodynamic Analysis of Stirling Engines,” Society of Automotive Engineers Annual Meeting, 1960.
    9.T. Finkelstein, “Computer Analysis of Stirling Engines,” Advances in Cryogenic Engineering, Vol. 20, pp. 269-282,1975.
    10.I. Urieli, “A Computer Simulation of Stirling Cycle Machines,” Ph. D. Thesis, University of Witwatersrand, South Africa, 1977.
    11.A. Schock, “Stirling Engine Nodal Analysis Program,” Journal of Energy, Vol. 2, No.6 1978.
    12.A. P. M. Glassford, “Adiabatic Cycle Analysis for Valved Thermal Compressor,” Journal of Energy, Vol. 3, No. 5, 1979.
    13.E. S. Richard, C. Borgnakke & J. V. W. Gordon, “Fundamentals of Thermodynamics,” 5th ed., John Wiley & Sons, Inc., 1997.
    14.W. R. Martin, “Stirling Engine Design Manual,” DOE/NASA/3152-78/1.
    15.B. Randall, “Cryogenic Systems,” McGraw-Hill Comp., pp318-321, 1966.
    16.A. Bejan, “Convection Heat Transfer.” 3rd ed., John Wiley & Sons, Inc., pp. 393-394, 1994.
    17.G. Walker & V. Vasishta, “Heat Transfer and Flow Friction Characteristic of Dense-Mesh Wire Screen Stirling-Cycle Regenerators,” Advances in Cryogenic Engineering, Vol. 16, 1971.
    18.W. R. Martini, “Stirling Engine Design Manual,” Washington Univ., Wash, DOE/NASA/3152-78/
    19.F. M. White, “Viscous Fluid Flow.”3rd ed., McGraw Hill Book Co. Inc., pp. 108-109, 2006.
    20.F. C. Mcquiston & J. D. Parker, “Heating, Ventilating And Air Condition Analysis and Design,” John Wiley & Sons, Inc., pp.529-535, 1977.
    21.N. B. Vargaftix, “Tables on the Thermophysical Properties of Liquids and Gases,”2nd ed., John Wiley & Sons, Inc., 1975.
    22.S. R. Hirsch, “On the Relation of Compressor Theory to Performance,” ASHRAE Journal, 1973.
    23.A. J. Organ, “Two Dimensional Thermodynamic and Flow Analysis of the Simple Hot Air Engine,” IMechE, Vol. 202, 1988.
    24.ASHRAE Handbook, “Fundamentals,” American Society of Heating, Refrigeration and Air-Conditioning Engineering, Inc., 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE