研究生: |
李承軒 Li, Cheng-Shiuan |
---|---|
論文名稱: |
稀土與鈾矽酸鹽合成、晶體結構與性質研究 Synthesis, Crystal Structures and Properties of Rare Earth and Uranium Silicates |
指導教授: |
王素蘭
Wang, Sue-Lein 李光華 Lii, Kwang-Hwa |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 210 |
中文關鍵詞: | 稀土 、鈾 、矽酸鹽 |
外文關鍵詞: | rare earth elements, uranium, silicates |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用高溫高壓水熱合成法與助熔劑長晶法合成了十個具有新穎結構的稀土元素與錒系矽酸鹽結構,其中四個稀土鎵矽酸鹽為等結構化合物,加上不同價數之鈾矽酸鹽總共分為三個系列加以介紹。所得化合物皆以單晶X光繞射方法收集數據後進行結構解析,再藉由調整合成方法以得到化合物的純相抑或是主要產物。利用粉末X光繞射圖譜與理論圖譜做比對以確定樣品純度供後續物理性質的測量。進行變溫粉末繞射實驗以確定結構之熱穩定度,並以固態核磁共振光譜、X光光電子光譜與X光吸收光譜來獲得化合物進一步資訊與單晶數據做驗證。再針對不同化合物的特性作量測: 例如以光致發光光譜、發光生命期量測以及其放光色度座標來了解化合物發光的特性;倍頻訊號量測佐證非中心對稱結構的存在。
第一個系列主要介紹一個新穎之稀土元素鎵矽酸鹽,主要是由[GaSi4O12]的混離子雙層與REO7多面體共邊形成之一維無限鏈所組成。此結構分別可以得到釔、銪、釓與鋱等四種稀土金屬之等結構,也可以將銪與鋱單獨或同時摻雜入以釔為主體之結構,這些具有發光特性之結構可以用來作為新穎螢光粉的應用。
第二個系列則是選擇不同之助熔劑組合來得到六價鈾矽酸鹽結構,B1與B2結構中不僅有鹽類分子存在且形成十二員環的大孔洞。B3化合物則是具有新穎連接方式之[Si8O22]12-與被隔開之Urφ4雙四角錐組合而成。
第三個系列是以高溫高壓水熱法得到兩個混價鈾矽酸鹽結構,合成配比中各加入兩種鹼金族陽離子以及氟離子,氟離子可以幫助得到還原態之鈾矽酸鹽,而雙陽離子同時進入結構中可能是產生混價結構之原因。C2結構中則是同時具有UIVO6、UVO7與UV/VIO7三種具有不同價數的結晶學位置的鈾。XPS以及XANES提供了有力的證據來證實結構中不同價數成份的存在。
This thesis introduces ten new rare-earth and uranium silicates which were synthesized by high-temperature, high-pressure hydrothermal or flux-growth methods. Four rare-earth gallosilicates adopt the same structural type and uranium silicates are classified into two series based on their valences. All structures were characterized by single crystal X-ray diffraction (SXRD). Pure or major phase of products can be obtained by adjusting experiment conditions. Their purities were checked by powder X-ray diffraction. The variable temperature powder diffraction patterns were used to understand the thermal stability of the compounds. Solid state NMR, X-ray photoelectron spectroscopy and X-ray absorption spectroscopy can give us structural information as compared with that from SXRD. Characterizations including photoluminescence, emission life time and second-harmonic generation were measured to investigate interesting properties of these compounds.
The A series share the same rare earth gallosilicate structure, Rb2REGaSi4O12 (RE = Y, Eu, Gd and Tb), constructed by 2-D [GaSi4O12] double layers and 1-D infinite chains formed by edge-sharing REO7. The RE sites on Rb2YGaSi4O12 can be partially substituted by Eu3+ or Tb3+ respectively or simultaneously. These photoluminescent compounds display great potential in the application of phosphor materials.
Different combination of fluxes were used to prepare four new uranyl silicates in B series. B1 and B2 are salt-inclusion structures containing MF (M = alkali ions) octahedraon in their 12-ring channels. B3 is constructed by unusual Si8O2212- oligosilicate anions and discrete Urφ4 tetragonal bipyramids.
In series C, two mixed-valence uranium silicates were synthesized by high temperature, high pressure hydrothermal method with the addition of two alkali cations and fluoride ions. The existence of fluoride ions in synthesis can stabilize the U5+ species (UO2+) and the entry of second alkali metal may induce the mixed-valence uranium in C1 structure. There are three unique uranium sites in C2 and each uranium adopts different valence state. The XPS and XANES data reveal that there are two valences (4+ and 5+) in C1 and three (4+, 5+ and 6+) in C2.
1-1 Cheetham, A. K.; Férey, G.; Loiseau, T. Angew. Chem., Int. Ed. 1999, 38, 3268 and references therein.
1-2 de St. Claire-Deville, H. C. R. Acad. Sci. 1862, 54, 324.
1-3 Wilson, S. T.; Lok, B. M.; Messina, C. A.; Cannan, T. R.; Flanigen, E. M. J. Am. Chem. Soc. 1982, 104, 1146.
1-4 Freyhardt, C. C.; Tsapatsis, M.; Lobo, R. F.; Balkus, K. J.; Davis, M. E. Nature 1996, 381, 295.
1-5 Wagner, P.; Yoshikawa, M.; Lovallo, M.; Tsuji, K.; Tsapatsis, M.; Davis, M. E. Chem. Commun. 1997, 2179.
1-6 Burton, A.; Elomari, S.; Chen, C.-Y.; Ronald, C. M.; Chan, I. Y.; Bull, L. M.; Kibby, C.; Harris, T. V.; Zones, S. I.; Vittoratos, E. S. Chem. Eur. J. 2003, 9, 5737.
1-7 Strohmaier, K. G.; Vaughan, D. E. W., J. Am. Chem. Soc. 2003, 125, 16035.
1-8 Cheetham, A. K.; Fjellvag, H.; Gier, T. E.; Kongshaug, K. O.; Lillerud, K. P.; Stucky, G. D. Stud. Surf. Sci. Catal. 2001, 135, 158.
1-9 Paillaud, J.-L.; Harbuzaru, B.; Patarin, J.; Bats, N.; Science 2004, 304, 990.
1-10 Corma, A. Diaz-Cabanas, M. J.; Rey, F.; Nicolopoulus, S.; Boulahya, K. Chem. Commun. 2004, 1356.
1-11 Corma, A. Diaz-Cabanas, M. J.;Martinez-Triguero, J.; Rey, F.; Rius, J. Nature 2002, 418, 514.
1-12 Zhou, Y.; Zhu, H.; Chen, Z.; Chen, M.; Xu, Y.; Zhang, H.; Zhao, D. Angew. Chem. Int. Ed. 2001, 40, 2166.
1-13 Plevert, J; Gentz, T. M.; Laine, A.; Li, H.; Young, V. G.; Yaghi, O. M.; O’Keeffe, M. J. Am. Chem. Soc. 2001, 123, 12706.
1-14 Zou, X.; Conradsson, T.; Klingstedt, M.; Dadachov, M. S.; O’Keeffe, M. Nature 2005, 437, 716.
1-15 (a) Lee, Y.; Kim, S. J.; Wu, G.; Parise, J. B., Chem. Mater. 1999, 11, 879; (b) Hung, L.-I.; Wang, S.-L.; Kao, H.-M.; Lii, K.-H. Inorg. Chem. 2003, 42, 4057; (c) Hung, L.-I.; Wang, S.-L.; Szu, S.-P.; Hsieh, C.-Y.; Kao, H.-M.; Lii, K.-H. Chem. Mater. 2004, 16, 1660; (d) Lo, F.-R.; Lii, K.-H. J. Solid State Chem. 2005, 178, 1017. (e) Hung, L.-I.; Wang, S.-L.; Chen, C.-Y.; Chang, B.-C.; Lii, K.-H. Inorg. Chem. 2005, 44, 2992; (f) Hung, L.-I.; Wang, S.-L.; Chen, Y.-H.; Lii, K.-H. Inorg. Chem. 2006, 45, 2100; (g) Liao, C.-H.; Chang, P.-C.; Kao, H.-M.; Lii, K.-H. Inorg. Chem. 2005, 44, 9335; (h) Hung, L.-I.; Wang, S.-L.; Kao, H.-M.; Lii, K.-H. Inorg. Chem. 2007, 46, 3301.
1-16 (a) Wang, X.; Jacobson, A. J. Chem. Commun. 1999, 973; (b) Kuznicki, S. M. et al. Nature 2001, 412, 720.
1-17 (a) Wang, X.; Liu, L.; Zhang, G.; Jacobson, A. J. Chem. Commun. 2001, 2472; (b) Wang, X.; Liu, L.; Jacobson, A. J. Angew. Chem. Int. Ed. 2001, 40, 2174; (c) Francis, R. J.; Jacobson, A. J. Angew. Chem. Int. Ed. 2001, 40, 2879; (d) Brandao, P.; Philippou, A.; Hanif, N.; Claro, P. R.; Ferreira, A.; Anderson, M. W.; Rocha, J. Chem. Mater. 2002, 14, 1053; (e) Brandao, P.; Valente, A.; Philippou, A.; Freeeira, A.; Anderson, M. W.; Racha, J. J. Mater. Chem. 2002, 12, 3819; (f) Wang, X.; Liu, L.; Jacobson, A. J. J. Am. Chem. Soc. 2002, 124, 7812; (g) Kao, H.-M.; Lii, K.-H. Inorg. Chem. 2002, 41, 5644; (h) Wang, X.; Liu, L.; Jacobson, A. J. Angew. Chem. Int. Ed. 2003, 42, 2044; (i) Brandao, P.; Paz F. A. A.; Racha, J. Chem. Commun. 2005, 171. (j) Tasi, J.-M.; Tu, P.-T.; Chan, T.-S.; Lii, K.-H. Inorg. Chem. 2008, 47, 11223.
1-18 (a) Ferreira, A.; Ananias, D.; Carlos, L. D.; Morais, C. M.; Rocha, J. J. Am. Chem. Soc. 2003, 125, 14573; (b) Ananias, D.; Kostova, M.; Paz, F. A. A.; Ferreira, A.; Carlos, L. D.; Klinowski, J; Rocha, J. J. Am. Chem. Soc. 2004, 126, 10410; (c) Huang, M.-Y.; Chen, Y.-H.; Chang, B.-C.; Lii, K.-H. Chem. Mater. 2005, 17, 5743; (d) Chiang, P.-Y.; Lin, T.-W.; Dai, J.-H.; Chang, B.-C.; Lii, K.-H. Inorg. Chem. 2007, 46, 3619.
1-19 (a) Shashkin, D. P.; Lur'e, E. A.; Belov, N.V. Kristallografiya 1974, 19, 958; (b) Plaisier, J. R.; Ijdo, D. J. W.; de Mello Donega, C.; Blasse, G. Chem. Mater. 1995, 7, 738; (c) Blaton, N.; Vochten, R.; Peters, O. M.; van Springel, K. Neus Jahrb. Mineral., Monatsh. 1999, 253; (d) Burns, P. C.; Olson, R. A.; Finch, R. J.; Hanchar, J. M.; Thibault, Y. J. Nucl. Mater. 2000, 278, 290; (e) Wang, X.; Huang, J.; Liu, L.; Jacobson, A. J. J. Mater. Chem. 2002, 12, 406; (f) Wang, X.; Huang, J.; Jacobson, A. J. J. Am. Chem. Soc. 2002, 124, 15190; (g) Huang, J.; Wang, X.; Jacobson, A. J. J. Mater. Chem. 2003, 13,191; (h) Chen, C.-S.; Chiang, R.-K.; Kao, H.-M.; Lii, K.-H. Inorg. Chem. 2005, 44, 3914; (i) Chen, C.-S.; Lee, S.-F.; Lii, K.-H. J. Am. Chem. Soc. 2005, 127, 12208; (j) Lin, C.-H.; Chen, C.-S.; Shiryaev, A. A.; Zubavichus, Y. V.; Lii, K.-H. Inorg. Chem. 2008, 47, 4445; (k) Lin, C.-H.; Chiang, R.-K.; Lii, K.-H. J. Am. Chem. Soc. 2009, 131, 2068.
1-20 Stieff, L. R.; Stern, T. W.; Sherwood, A. M. Science 1955, 121, 608
1-21 Byrappa, K.; Ohachi, T. (Eds) Crystal Growth Technology, William Andrew Inc.:New York, 2003.
1-22 徐如人;龐文琴編著, 無機合成與製備化學 (Inorganic Synthesis and Preparative Chemistry),五南圖書出版股份有限公司, 2004.
1-23 Elwell, D.; Scheel, H. J. Crystal Growth from High-Temperature Solutions, Academic Press: London 1975.
1-24 Rabenau, A. Angew. Chem. Int. Ed. 1985, 24, 1026.
1-25 Kennedy, G. C. Am. J. Sci. 1950, 248, 540.
1-26 王素蘭,科儀新知,民國九十四年二月第二十六卷第四期
1-27 APEX II software package; Bruker AXS, Madison, WI, 2005.
1-28 Sheldrick, G. M. SAINT programs, Release Version 5.1; Bruker AXS, Madison, WI, 1998.
1-29 Sheldrick, G. M. SHELXTL programs, Release Version 5.1; Bruker AXS, Madison, WI, 1998.
1-30 Burns, P. C.; Ewing, R. C.; Hawthorne, F. C. Can. Mineral. 1997, 35, 1551.
1-31 Brown, I. D.; Altermann, D. Acta Crystallogr. 1985, B41, 244.
1-32 高憲明 中國化學會, 2004, 62, 255.
1-33 Alcock, N. W. Bonding and Structure; Ellis Horwood: New York, 1990.
1-34 李志甫(國家同步輻射研究中心) 光束線BL17C1 操作說明.