研究生: |
曾志宏 Tseng, Chih-Hung |
---|---|
論文名稱: |
自我穩定塗色演算法 Self-Stabilizing Coloring Algorithms |
指導教授: |
黃興燦
Huang, Shing-Tsaan |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 113 |
中文關鍵詞: | 分散式系統 、鄰邊塗色 、平面化 、自我穩定 、節點塗色 |
外文關鍵詞: | Distributed System, Edge Coloring, Planarization, Self-Stabilization, Vertex Coloring |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自我穩定系統是一個容錯分散式網路. 當系統遇到無法預期的暫態錯誤時, 像是節點加入或是離開網路, 或者是單純的硬體故障, 它就可以假想為被暫態錯誤帶到一個隨意的初始狀態. 依照自我穩定的定義, 系統可以自發性地在有限時間之內回到合法狀態, 進而達到容錯的功能. 基於此, 自我穩定系統亦有自主管理, 易擴展, 以及適應環境的功能.
在本篇論文裡, 我們探討自我穩定系統中的塗色問題, 我們提出三個塗色演算法. 第一個演算法討論的是節點的塗色, 它可以快速地用七種顏色塗平面網路的節點, 它的時間複雜度是 O(log n), n 代表的是節點總數. 第二個演算法討論的是平面圖的鄰邊塗色. 它用到的顏色數是 (Delta + 4), 其中 Delta 表示網路的最大分支度. 它的時間複雜度是 O(n^2). 第三個演算法討論的是雙分圖的鄰邊塗色. 它只用了 Delta 個顏色, 因此它能找到網路的最佳鄰邊塗色; 它的時間複雜度則是 O(kn^2+m), k 代表的是初始狀態裡沒有正確顏色的鄰邊個數, 而 m 代表的是網路中的鄰邊總數. 由於時間複雜度和初始狀態有關, 第三個演算法有和 time-adaptive 以及 superstabilization 類似的特性.
這篇論文另有提出一個將完全雙分網路平面化的演算法. 我們的方法是挑選出一組鄰邊, 該組鄰邊會將原本網路平面化 (即不會形成 K5 和 K3,3 的 subdivision, 這裡的 K5 和 K3,3 分別代表五個點和完全連通圖及三對三的完全雙分圖). 我們的方法可以在 O(n) 以內的時間就可以找到這樣的一組鄰邊. 該方法可以和其他的塗色演算法結合並找到一個網路的部分塗色.
A self-stabilizing system is a fault-tolerant distributed network. When it encounters transient faults, including leave/join of nodes or hardware breakdown, it is onceptually
brought into an arbitrary initial configuration. It then always manages to return to legitimate configurations without human intervention and resumes operations. For being
able to spontaneously fix itself, a self-stabilizing algorithm is also autonomous, scalable,
and adaptable.
In this dissertation, we study the well-known coloring problems in self-stabilizing systems. We propose three coloring algorithms, one for the vertex coloring problem
and the other two for the edge coloring problem. The first one quickly 7-colors planar networks; its time complexity is O(log n), where n is the number of nodes. The second
one (Delta + 4)-edge colors planar networks; its time complexity is O(n^2), where Delta is the maximum degree of the nodes. The third one Delta-edge colors bipartite networks; its time complexity is O(kn^2m+m), where k is the number of edges not properly colored in the
initial configuration and m is the number of edges. Thus, it finds optimal edge colorings.
In addition, it has a property similar to time-adaptive stabilization or superstabilization because its time complexity depends on the quality of the initial configuration.
We also study the planarization problem and propose an algorithm that planarizes complete bipartite networks. By not forming a subdivision of K5 or K3,3, the algorithm
finds spanning planar graphs in O(n) time, where K5 is a complete graph and K3,3 is a complete bipartite graph. It can further combine with coloring algorithms for finding
partial colorings for the networks.
[1] L. O. Alima, J. Beauquier, A. K. Datta, and S. Tixeuil. Self-stabilization with global rooted synchronizers. In Proceedings of the 18th International Conference on
Distributed Computing Systems, pages 102–109, 1998.
[2] K. Alzoubi, X. Y. Li, et al. Geometric spanners for wireless ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 14(4):408–421, 2003.
[3] D. Angluin. Local and global property in networks of processors. In ACM Symposium on Theory of Computing, pages 82–93, 1980.
[4] A. Arora and M. G. Gouda. Distributed reset. IEEE Transactions on Computers, 43(9):1026–1038, 1994.
[5] V. C. Barbosa, C. A. G. Assis, and J. O. do Nascimento. Two novel evolutionary formulations of the graph coloring problem. Journal of Combinatorial Optimization, 8(1):41–63, 2004.
[6] S. C. Bruell, S. Ghosh, M. H. Karaata, and S. V. Pemmaraju. Self-stabilizing algorithms for finding centers and medians of trees. SIAM Journal on Computing, 29(2):600–614, 1999.
[7] J. Burman and S. Kutten. Time optimal asynchronous self-stabilizing spanning tree. In The International Symposium on Distributed Computing (DISC), pages 92–107, 2007.
[8] L. Cai, X. Han, and R. E. Tarjan. An O(mlog n)-time algorithm for the maximal planar subgraph problem. SIAM Journal on Computing, 22(6):1142–1162, 1993.
[9] N. Chiba, T. Nishizeki, and N. Saito. A linear 5-coloring algorithm of planar graphs. Journal of Algorithms, 2(4):317–327, 1981.
[10] R. Cole, K. Ost, and S. Schirra. Edge-coloring bipartite multigraphs in O(E logD) time. Combinatorica, 21(1):5–12, 2001.
[11] G. C˘alinescu, C. G. Fernandes, U. Finkler, and H. Karloff. A better approximation algorithm for finding planar subgraphs. Journal of Algorithms, 27(2):269–302, 1998.
[12] G. C˘alinescu, C. G. Fernandes, H. Karloff, and A. Zelikovsky. A new approximation algorithm for finding heavy planar subgraphs. Algorithmica, 36(2):179–205, 2003.
[13] A. K. Datta, C. Johnen, F. Petit, and V. Villain. Self-stabilizing depth-first token circulation in arbitrary rooted networks. Distributed Computing, 13(4):207–218,
2000.
[14] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of the ACM, 17(11):643–644, 1974.
[15] E.W. Dijkstra. A belated proof of self-stabilization. Distributed Computing, 1(1):5–6, 1986.
[16] H. N. Djidjev. A linear-time algorithm for finding a maximal planar subgraph. SIAM Journal on Discrete Mathematics, 20(2):444–462, 2006.
[17] S. Dolev. Self-stabilization. MIT Press, 2000.
[18] S. Dolev and T. Herman. Parallel composition for time-to-fault adaptive stabilization. Distributed Computing, 20(1):29–38, 2007.
[19] S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assuming only read/write atomicity. Distributed Computing, 7(1):3–16, 1993.
[20] S. Dolev, A. Israeli, and S. Moran. Uniform dynamic self-stabilizing leader election. IEEE Transactions on Parallel and Distributed Systems, 8(4):424–440, 1997.
[21] D. Durand, R. Jain, and D. Tseytlin. Parallel I/O scheduling using randomized, distributed edge coloring algorithms. Journal of Parallel and Distributed Computing,
63(6):611–618, 2003.
[22] G. N. Frederickson. On linear-time algorithms for five-coloring planar graphs. Information Processing Letters, 19(5):219–224, 1984.
[23] H. N. Gabow and O. Kariv. Algorithms for edge coloring bipartite graphs. In Conference of the 10th Annual ACM Symposium on Theory of Computing, pages 184–192, 1978.
[24] H. N. Gabow and O. Kariv. Algorithms for edge coloring bipartite graphs and multigraphs. SIAM Journal on Computing, 11(1):117–129, 1982.
[25] S. Gandham, M. Dawande, and R. Prakash. Link scheduling in wireless sensor networks: distributed edge-coloring revisited. Journal of Parallel and Distributed
Computing, 68(8):1122–1134, 2008.
[26] M. R. Garey and D. S. Johnson. Computers and Intractability : A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.
[27] S. Ghosh and M. H. Karaata. A self-stabilizing algorithm for coloring planar graph. Distributed Computing, 7(1):55–59, 1993.
[28] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. Self-stabilizing algorithms for orderings and colorings. International Journal of Foundations of
Computer Science, 16(1):19–36, 2005.
[29] M. G. Gouda and F. F. Haddix. The stabilizing token ring in three bits. Journal of Parallel and Distributed Computing, 35(2):43–48, 1996.
[30] M. G. Gouda and F. F. Haddix. The alternator. Distributed Computing, 20(1):21–28, 2007.
[31] D. Grable and A. Panconesi. Nearly optimal distributed edge-coloring in O(log log n) rounds. RSA, 10(3):385–405, 1997.
[32] M. Gradinariu and S. Tixeuil. Self-stabilizing vertex coloring of arbitrary graphs. In Proceedings of the International Conference on Principles of Distributed Systems (OPODIS), pages 55–70, 2000.
[33] M. Gradinariu and S. Tixeuil. Conflict managers for self-stabilization without fairness assumption. In Proceedings of the 27th International Conference on Distributed Computing Systems (ICDCS ’07), page 46, Washington, DC, USA, 2007. IEEE Computer Society.
[34] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1994.
[35] R. Hadid and M. H. Karaata. Stabilizing maximum matching in bipartite networks. Computing, 84(1–2):121–138, 2009.
[36] S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. Maximal matching stabilizes in time O(m). Information Processing Letters, 80(5):221–223, 2001.
[37] S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. Linear time self-stabilizing colorings. Information Processing Letters, 87(5):251–255, 2003.
[38] T. Herman, I. Pirwani, and S. Pemmaraju. Oriented edge colorings and link scheduling in sensor networks. In International Conference on Communication Software
and Middleware, pages 1–6, 2006.
[39] I. Holyer. The NP-completeness of edge coloring. SIAM Journal on Computing,10(4):718–720, 1981.
[40] J. E. Hopcroft and R. E. Tarjan. Efficient planarity testing. Journal of the ACM, 21(4):549–568, 1974.
[41] S. C. Hsu and S. T. Huang. A self-stabilizing algorithm for maximal matching. Information Processing Letters, 24(2):77–81, 1992.
[42] S. T. Huang, S. S. Hung, and C. H. Tzeng. Self-stabilizing coloration in anonymous planar networks. Information Processing Letters, 95(1):307–312, 2005.
[43] M. H. Karaata and K. A. Saleh. A distributed self-stabilizing algorithm for finding maximum matching. Computer Systems Science and Engineering, 15:175–180, 2000.
[44] B. Karp and H. T. Kung. GPSR: greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th annual international conference on Mobile computing
and networking (MobiCom ’00), pages 243–254, 2000.
[45] Y. Katayama, E. Ueda, H. Fujiwara, and T. Masuzawa. A latency optimal superstabilizing mutual exclusion protocol in unidirectional rings. Journal of Parallel and Distributed Computing, 62:865–884, 2002.
[46] D. K¨onig. ¨ Uber graphen und ihre anwendung auf determinententheorie und mengenlehre. Math. Ann, 77:453–465, 1916.
[47] A. Kosowski and L. Kuszner. Self-stabilizing algorithms for graph coloring with improved performance guarantees. In Artificial Intelligence and Soft Computing
(ICAISC), pages 1150–1159, 2006.
[48] E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric networks. In Proc. 11 th Canadian Conference on Computational Geometry (CCCG 1999), pages 51–54, 1999.
[49] S. Kutten and B. Patt-Shamir. Stabilizing time-adaptive protocols. Theoretical Computer Science, 220(1):93–111, 1999.
[50] X. Y. Li, G. Calinescu, P. J. Wan, and Y. Wang. Localized Delaunay triangulation with application in Ad Hoc wireless networks. IEEE Transactions on Parallel and Distributed Systems, 14(10):1035–1047, 2003.
[51] A. Liebers. Planarizing graphs — a survey and annotated bibliography. Journal of Graph Algorithms and Applications, 5(1):1–74, 2001.
[52] R. J. Lipton and R. E. Miller. A batching method for coloring planar graphs. Information Processing Letters, 7(4):185–188, 1978.
[53] T. Masuzawa and S. Tixeuil. Stabilizing link-coloration of arbitrary networks with unbounded Byzantine faults. International Journal of Principles and Applications
of Information Science and Technology, 1(1):1–13, 2007.
[54] T. Masuzawa and S. Tixeuil. On bootstrapping topology knowledge in anonymous networks. ACM Transactions on Autonomous and Adaptive Systems, 4(1):1–27, 2009.
[55] S. T. McCormick, G. Rinaldi, and M. R. Rao. Easy and difficult objective functions for max cut. Mathematical Programming, 94(2–3):459–466, 2003.
[56] J. Misra and D. Gries. A constructive proof of Vizing’s theorem. Information Processing Letters, 41(3):131–133, 1992.
[57] M. Mizuno and M. Nesterenko. A transformation of self-stabilizing serial model programs for asynchronous parallel computing environments. Information Processing Letters, 66(6):285–290, 1998.
[58] M. Nesterenko and A. Arora. Stabilization-preserving atomicity refinement. Journal of Parallel and Distributed Computing, 62(5):766–791, 2002.
[59] A. Panconesi and A. Srinivasan. Fast randomized algorithms for distributed edge coloring. SIAM Journal on Computing., 26(2):350–368, 1992.
[60] T. Poranen. Two new approximation algorithms for the maximum planar subgraph problem. Acta Cybern., 18(3), 2008.
[61] R. Rizzi. K¨onig’s edge coloring theorem without augmenting paths. Journal of Graph Theory, 29(2):87, 1998.
[62] N. Robertson, D. P. Sanders, P. Seymour, and R. Thomas. A new proof of the four colour theorem. Electronic Research Announcements of American Mathematical Society, 2(1):17–25, 1996.
[63] Y. Sakurai, F. Ooshita, and T. Masuzawa. A self-stabilizing link-coloring protocol resilient to Byzantine faults in tree networks. In International Conference on
Principles of Distributed Systems (OPODIS), pages 283–298, 2004.
[64] A. Schrijver. Bipartite edge coloring in O(Dletam) time. SIAM Journal on Computing, 28(3):841–846, 1999.
[65] S. K. Shukla, D. J. Rosenkrantz, and S. S. Ravi. Developing self-stabilizing coloring algorithms via systematic randomization. In International Workshop on Parallel Processing, pages 668–673, 1994.
[66] S. K. Shukla, D. J. Rosenkrantz, and S. S. Ravi. Observations on self-stabilizing graph algorithms for anonymous networks. In Proceedings of the Second Workshop
on Self-Stabilizing Systems, pages 7.1–7.15, 1995.
[67] H. Sun, B. Effantin, and H. Kheddouci. A self-stabilizing algorithm for the minimum color sum of a graph. In International Conference on Distributed Computing and
Networking (ICDCN), pages 209–214, 2008.
[68] J. Suomela. Survey of local algorithms. manuscript, May 2009.
[69] S. Sur and P. K. Srimani. A self-stabilizing algorithm for coloring bipartite graphs.
Information Sciences, 69(3):219–227, 1993.
[70] J. Urrutia. Local solutions for global problems in wireless networks. Journal of Discrete Algorithms, 5(3):395–407, 2007.
[71] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Diskret. Analiz (in Russian), 3:25–30, 1964.
[72] D. B. West. Graph Theory. Prentice Hall, 2001.