研究生: |
李相儀 Hsiang-Yi Lee |
---|---|
論文名稱: |
以機械合金法製備錫銀鎳銲料並探討鎳濃度與奈米級Ni3Sn4粉末對銲錫性質之影響 Influence of Ni Content and Ni3Sn4 Nanoparticles on Morphology of Sn-Ag-Ni Solders by Mechanical Alloying |
指導教授: |
杜正恭
Jenq-Gong Duh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 113 |
中文關鍵詞: | 機械合金 、無鉛銲錫 、界面反應 、錫銀鎳 、DSC |
外文關鍵詞: | Mechanical alloy, Ni3Sn4, interfacial reaction, SnAgNi, DSC |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討以機械合金法應用於錫銀鎳銲錫材料的製備並研究添加不同比例的鎳於Sn-3.5Ag-xNi銲錫粉末中(x=0.1, 0.5, 1.0, 1.5 與 2.0 wt.%),對粉末性質的影響。研究發現:當添加的鎳含量較低時(x=0.1, 0.5wt.%),粉末聚集成較大的碇狀顆粒,其尺寸大於100µm。當鎳含量增加(x=1.0, 1.5 與 2.0 wt.%),粉末會研磨並破碎成小於100µm的薄片。配合XRD與SEM結果,顯示添加的鎳含量越多,經延展、冷銲、破碎的過程後,產生散佈於銲錫粉末合金相總量亦增加,並在研磨過程中會對粉末尺寸造成影響。本文將探討此鎳含量的改變對研磨機制的影響,並藉由添加奈米(nano)等級之Ni3Sn4合金粉末,經機械研磨後,研究出有效的降低機械合金法製備之錫銀鎳銲錫粉末的方法。由DSC的分析結果得知:經機械研磨所製備之錫銀鎳銲料之熔點為217∼218oC,因此將適用於240oC之退火過程。
在界面反應方面。經由240oC 迴銲3次後,將探討不同鎳含量(0.1∼2.0 wt.%)之錫銀鎳銲錫與電鍍銅之間的界面反應情形,並藉著場發電子微探儀(FE-EPMA)的定量分析,測定Cu6Sn5 IMC的生成,發現有微量的鎳固溶其中。本研究顯示隨著鎳的添加量增加,亦會造成Cu6Sn5 IMC厚度持續地增加,並發現有更多的鎳固溶在Cu6Sn5 IMC中。然而,在同樣的鎳含量下,於Ni-doped銲錫/電鍍銅界面所觀察為扇貝狀的Cu6Sn5 IMC,在Ni3Sn4-doped銲錫/電鍍銅界面卻觀察到鵝軟石狀的Cu6Sn5 IMC。並經多次迴銲發現:Ni3Sn4-doped銲錫/電鍍銅界面的(Cu,Ni)6Sn5厚度較Ni-doped銲錫/電鍍銅界面生成之(Cu,Ni)6Sn5厚度為厚。根據界面厚度差異,可由此得知Ni3Sn4-doped銲錫與純銅的界面反應較Ni-doped銲錫/電鍍銅快速且劇烈。
在潤濕性方面,同樣鎳含量下,添加微量(x<0.5wt.%)奈米級Ni3Sn4粉末之錫銀鎳銲錫與電鍍銅比添加純鎳粉末之錫銀鎳銲錫形成較小的接觸角。總括來說,經退火後,以機械合金法自製的錫銀鎳錫膏與電鍍銅皆可形成接觸角小於25o之良好接合。
Mechanical alloying (MA) process was employed as an alternative method to produce SnAgNi solder pastes in this study. The properties of solder powders were investigated by doping various Ni concentration into Sn-3.5Ag-xNi alloys (x=0.1, 0.5, 1.0, 1.5, and 2.0 wt. %). When the Ni concentration was low (x=0.1, 0.5 wt. %), MA particles agglomerated to a flat ingot with the particle size larger than 100μm. For higher Ni concentration (x= 1.0, 1.5, and 2.0 wt. %), MA particles turned to fragments and the particle size was below 100μm. The results of XRD and SEM revealed the formation of alloys dispersed in solder powders, which led to the decrease of particle size after flattening, cold welding and fracturing. It appeared that the particle size of solders was dependent on the Ni concentration. To reduce the particle size of SnAgNi alloys with low Ni concentration, Ni3Sn4 nanoparticles were further doped into Sn and Ag powders to derive the SnAgNi composite solder. For the Ni3Sn4-doped solder, the particle size was smaller than that of the Ni-doped solder. The distinction of milling mechanism for both Ni3Sn4-doped solder and Ni-doped solder by MA process was probed and discussed. Besides, the DSC results ensured the feasibility to apply the solder material for the reflow process.
SnAgNi solder joints with Ni concentration from 0.1 to 2.0 wt.% after 3 times reflow at 240oC were employed to investigate the evolution of interfacial reaction between SnAgNi solders and electroplated Cu. For the Ni-doped solders, the Cu6Sn5 phase with little Ni was formed after deliberately quantitative analysis with field emission electron probe microanalyzer. The addition of Ni substantially increased the amount of intermetallic compound at the SnAgNi solders/Cu interface and also enhanced the dissolution of Ni in (Cu,Ni)6Sn5. By doping nano-sized Ni3Sn4 particles into Sn-Ag solder, the morphology of (Cu,Ni)6Sn5 IMC became pebble-shape. The thickness of (Cu,Ni)6Sn5 IMC was much larger in Ni3Sn4-doped solder than that in Ni-doped solder after multiple reflow times. Hence, the reaction at the interfaces of Ni3Sn4-doped solder/Cu was more rapid than that at Ni-doped solder/Cu.
In addition, wettability test revealed that the wetting angles of Ni3Sn4-doped solder with low Ni concentration (0.1 and 0.5wt. %) were smaller than that of Ni-doped solder between solders and Cu substrate. The wetting angles of SnAgNi solders were also comparable with commercial Sn-3.5Ag and Sn-3.0Ag-0.5Cu solders on either Cu substrate or electroplated Ni metallization. Favorable wettability of the as-derived solder in this study was clearly demonstrated.
1. M. Abtew and G. Selvaduray, ‘‘Lead-free Solders in Microelectronics’’, Mat. Sci. Eng.: R: Reports, vol.27, 2000, pp.95-141.
2. H. Reichl, A. Schubert and M. Töpper, ‘‘Reliability of Flip Chip and Chip Size Packages’’, Micro. Rel., vol. 40, 2000, pp.1243-1245.
3. S. Topani, S. Gopakumar, P. Borgesen and K. Srihari, ‘‘Reliability of Lead-Free Solder Interconnections-A Review’’, 2002 annual reliability and maintainability symposium, (Piscataway, NJ: IEEE, 2002), pp.423-428.
4. F. Guo, S. Choi, J. P. Lucas, K. N. Subramanian, Surf. MT. Thech., 13. 7 (2001).
5. W. K. Choi and H. M. Lee, J. Electron. Mater. 28, 1251 (1999).
6. J. G. Lee, F. Guo, K. N. Subramanian and J. P. Lucas, Solder. Surf. MT. Thech., 14, 11(2002).
7. N. C. Lee, Chip Scale Review, March/April (2000), www.pb-free.com.
8. IPC Road Map for Lead free Electronics Assemblies 2nd Draft, Nov (1999), www.leadfree.org
9. A. Zribi, A. Clark, L. Zavalij, P. Borgesen and E. J. Cotts, J. Electron. Mater. 30, 1157 (2001).
10. C. W. Hwang, J. G. Lee, K. Suganuma and H. Mori, J. Electron. Mater. 32, 52 (2003).
11. K.S. Kim, S.H. Huh and K. Suganuma, Microelectron. Relia. 43, 259 (2003).
12. W. K. Choi, J. H. Kim, S. W. Jeong and H. M. Lee, J. Mater. Res. 17, 43 (2002).
13. I. E. Anderson, B. A. Cook, J. Harringa, and R. L. Terpstra, 31, 1166 (2002).
14. Lucas, J. P., Guo, F., McDougall, J., Bieler, T. R., Subramanian, K. N. and Park. J. K., J. Electron. Mater. 28, 1268 (1999).
15. W.R. Lewis, Notes on Soldering, Tin Research Institute, 1961, pp.66.
16. R. B. Clough, A. J. Shapiro, G. K. Lucey, Mater. Sci. Tech-Lond. 10 (8): 696-701 AUG 1994
17. D. Lin, G.X. Wang, T. S. Srivatsan, M. A. Hajri and M. Petraroli, Mater. Lett., 53, 333 (2002).
18. H.S. Betrabet, S.M. McGee and J.K. McKinlay, Scripta Metall. 25, 2323 (1991).
19. J. H. Lee, D. Park, J. T. Moon, Y. H. Lee, D. H. Shin, and Y. S. Kim, J. Electron. Mater. 29, 10 (2000)
20. S.G. Zhang, B. C. Yang, B. Yang, J. Xu, L. K. Shi, X. X. Zhu. Acta Metallurgica Sinica 38 (8) 888 (2002)
21. Lucas, J. P., Guo, F., McDougall, J., Bieler, T. R., Subramanian, K. N. and Park., J. K., J. Electron. Mater. 28, 1268 (1999).
22. H. L. Lai and J. G. Duh, J. Electron. Mater. 32, 215 (2003)
23. Y. Wu, J.A. Sees, C. Pouraghabagher, L.A. Foster, J.L. Marshall, E.G. Jacobs and R.F. Pinizzotto, J. Electron. Mater. 22, 769 (1993).
24. M.L. Huang, C.M.L. Wu and J.K.L. Lai, J. Mat. Sci.: Mat. in Elec.11, 57 (2000).
25. S. T, Kao and J.G. Duh, J. Electron. Mater., 33, 1445 (2004)
26. C.M.L. Wu, M.L. Huang, J.K.L. Lai and Y.C. Chan, J. Electron. Mater. 29, 1015 (2000).
27. M.L. Huang, C.M.L. Wu, J.K.L. Lai, and Y. C. Chan, J. Electron. Mater. 29, 1021 (2000).
28. C. Suryanarayana, “Mechanical Alloying and milling”, Pro. In Mat. Sci., vol. 46, 2001, pp. 1-184.
29. P. Y. Lee, J. L. Yang and H. M. Lin, J. Mat. Sci. 33, 235 (1998)
30. J. S. Benjamin, “Mechanical Alloying”, Sci. Amer. Vol. 234, No. 5, 1976, pp. 40-48.
31. C. Chen, C. E. Ho, A. H. Lin, G. L. Luo and C. R. Kao, J. Electron. Mater. 29, 1200 (2000)
32. J. Y. Tsai, Y. C. Hu, C. M. Tsai and C. R. Kao, J. Electron. Mater.32, 1203 (2003).
33. M. E. Loomans, S. Vaynman, G. Gosh and M. E. Fine, J. Electron. Mater. 23, 8, 741 (1994)
34. S. T, Kao, Y. C. Lin and J.G. Duh, submitted to J. Electron. Mater.
35. T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kuo, J.K. Lin, D.R. Frear, K.Zeng and J.K. Kivilahti, J. Mat. Res., 17, 291 (2002).
36. S.K. Kang, H. Mavoori, S. Chada, et al., J. Electron. Mater. 30, 1049 (2001).
37. P.T. Vianco, S.N. Burchett, M.K. Nielsen, et al., J. Electron. Mater. 28, 1127 (1999).
38. M. E. Loomans and M. E. Fine, Mteal. Mat. Trans. A, 31A, 1155 (2000).
39. T. M. Korhonen, P. Su, S. J. Hong, M. A. Korhonen and C. Y. Li, J. Electron. Mater. 29, 1194(2000).
40. J.J. Jiang and M. Gasik, “An electrochemical investigation of mechanical alloying of MgNi-based hydrogen storage alloys”, J. Power Sources, Vol. 89, Issue 1, 2000, pp.117-124.
41. N.H. Goo and K.S. Lee, “The electrochemical hydriding properties of Mg–Ni–Zr amorphous alloy”, Inter. J. Hydrogen Energy, Vol. 27, Issue 4, 2002, pp.433-438.
42. L. Bolin, “Hardening and softening in mechanically alloyed iron-copper nanocrystalline solutions”, Metal Powder Report, Vol. 53, Issue 5, 1998, pp.38.
43. C.M.L. Wu, M.L. Huang, J.K.L. Lai and Y.C. Chan, ‘‘Developing a Lead-Free Solder Alloy Sn-Bi-Ag-Cu by Mechanical Alloying’’, J. Elec. Mat., Vol.29, No.8, 2000, pp.1015-1020.
44. M.L. Huang, C.M.L. Wu, J.K.L. Lai and Y.C. Chan, ‘‘Microstructural Evolution of a Lead-Free Solder Alloy Sn-Bi-Ag-Cu Prepared by Mechanical Alloying during Thermal Shock and Aging’’, J. Elec. Mat., Vol.29, No.8, 2000, pp.1021-1026.
45. C.A. Harper, ‘‘Electronic Packaging and Interconnection Handbook’’, McGraw-Hill, New York, 2nd Ed., 1997.
46. R.E. Reed-Hill, Physical Metallurgy Principles, PWS, Massachusetts, ISBN 0-53-492173-6, 1994, pp.306-307.
47. S. K. Kang and Thmas G. Ference, J. Mater. Res. 8, 1063 (1993).
48. F. Guo, J. Lee, J. P. Lucas, K. N. Subramanian, and T. R. Bieler, J. Electron. Mater. 30, 1222(2001).
49. Chuang C.M. and Lin K. L., J. Electron. Mater. 32, 1426(2003).
50. J. Y. Tsai, Y. C. Hu, C. M. Tsai and C. R. Kao, J. Electron. Mater.32, 1203(2003).
51. L.E. Murr, “Interfacial Phenomena in Metals and Alloys”, Addison-Wesley, ISBN 0-201-04884-1
52. P. Vianco, J. Rejent and R. Grant, Mater. Transactions 45 (2004) 765
53. Z. Xia, Y. Shi, and Z. Chen, J. Mater. Eng. Perform., 11 (2002) 107
54. E. Bradley and J. Hranisavljevic, IEEE T. Electron. Packge., 24 (2001) 255
55. M. L. Huang, C. M. L. Wu, J. K. L. Lai, L. Wang , and F. G. Wang, J Mater. Sci.: Mater. EL, 11 (2000) 57
56. P. T. Vianco, and J. A. Rejent, J. Electron. Mater., 28 (1999) 1127
57. J. I. Goldstein, Scanning Elecron Microscopy and X-ray Microanalysis, Plenum Press, New York, (1981).
58. R. R. Chromik, R. P. Vinci, S. L. Allen, and M. R. Notis, J. Mater. Res. 18, 2251 (2003)
59. G. Y. Jang, J. W. Lee and J. G. Duh, J. Electron. Mater. 33, 1103 (2004)
60. L. Lu, M. O. Lai, and S. Zhang, J. Mater. Process. Technol. 67, 100 (1997).
61. F. Guo, J. Lee, S. Choi, J. P. Lucas, T. R. Bieler and, K. N. Subramanian, J. Electron. Mater. 30, 1073 (2001).
62. Y. Wu, J. A. Sees, C. Pouraghabagher, L. A. Foster, J. L. Marshall, E. G. Jacobs and R. F. Pinizzotto, J. Electron. Mater., 22, 769 (1993)
63. S. Choi, T. R. Bieler, J. P. Lucas and K. N. Subramanian, J. Electron. Mater., 28, 1209 (1999)
64. S. T. Kao and J. G. Duh, submitted to J. Electron. Mater.
65. E. Ho, Y. L. Lin, and C. R. Kao, Chem. Mater., 14, 949, (2002)
66. C. S. Hung and J. G. Duh, J. Electron. Mater.,18, 935 (2003)
67. L. Ye, Z. H. Lai, j. Liu and A Thölén, Solder. Surf. Mt, Tech., 13, 16 (2001).
68. M. O. Alam, Y. C. Chan, and K. N. Tu, J. Appl. Phys., 94, 7904 (2003)
69. C. Y. Liu, J. Li, G. J. Vandentop, W. J. Choi and K. N. Tu, J. Electron. Mater. 30, 521 (2001)
70. S. W. Chen, S. H. Wu, and S. W. Lee, J. Electron. Mater. 32, 1188 (2003)
71. J. Sigelko S. Choi, K. N. Subramanian, and J. P. Lucas, J. Electron. Mater. 29, 1307 (2000)
72. C. M. Chuang and K. L. Lin, J. Electron. Mater. 32, 1426 (2003)
73. M. McCormack, G. W. Kammlott, H. S. Chen and S. Jin, Appl. Phys. Lett., 65, 1233 (1994)
74. D.R. Frear, S.N. Burchett, H.S. Morgan, and J.H. Lau, eds., The Mechanics of Solder Alloy Interconnects, p. 60 (Van Nostrand Reinhold, New York, 1994)