研究生: |
侯凱齡 Hou, Kai-Ling |
---|---|
論文名稱: |
利用氟標記輔助化學及酵素合成寡醣 Fluorous-tag Assisted Chemoenzymatic Synthesis of Oligosaccharides |
指導教授: | 林俊成 |
口試委員: |
林俊宏
吳東昆 林俊成 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 130, 28 |
中文關鍵詞: | 酵素合成 、氟 、抗原 、寡醣 |
外文關鍵詞: | enzymatic synthesis, fluorous, antigen, oligosaccharides |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中利用IMPACTTM-CN system (Intein Mediated Purification with Affinity Chitin-binding Tag) 系統,成功表達出岩藻糖激酶/鳥苷二磷酸岩藻糖焦磷酸化酶 (FKP)、α-1,3-岩藻糖轉移酶 (α-1,3-FucT) 與 -1,3-乙醯半乳糖胺基轉移酶/半乳醣轉移酶 (LgtD)。利用FKP合可製得百毫克的GDP-Fuc,結合α-1,3-FucT與實驗室已發表之唾液酸轉移酶 (PmST),成功合成Lewis X和sialyl Lewis X。
為了進一步合成不同的多醣體,表達及結合實驗室已有的半乳糖激酶 (GalK)、α-1,4-半乳糖轉移酶 (LgtC)、β-1,3-N-乙醯葡萄糖胺轉移酶 (HpGnT),並針對醣基轉移酶進行非專一受質的忍受度探討,成功合成出P1抗原。此外,利用氟標記之物質,可快速純化目標產物的特性,進一步將氟標記修飾在雙醣的還原端連結鏈上,結合酵素反應進行目標物合成,並經由氟的固相萃取 (Fluorous Solid-phase Extraction,F-SPE) 可大幅縮短純化時間為三十分鐘,是一種有效率的合成方法。
另外,研究發現α-1,3-FucT可以接受含氟標記之N-乙醯基乳糖胺 (LacNAc)、sialyl LAcNAc、LacdiNAc (N,N-diacetyl-lactosamine) 當作受質,進行醣基化反應 (fucosylation) 後,生成含氟標記之Lewis X、sialyl Lewis X和dimeric Lewis X。
In this thesis, we employed IMPACTTM-CN system to overexpress L-fucokinase/GDP-fucose pyrophosphorylase (FKP), α-1,3-fucosyl- transferase (FucT), and β-1,3-N-acetylgalactosaminyltransferase/ β-1,3-galactosyltransferase (LgtD). FKP was used to synthesize GDP-Fucose. The synthesis was performed on preparative scales (230 mg) and the reaction was monitor by high performance liquid chromatography. After quenching the reaction with ethanol, the crude products were purified by gel filtration using BioGel P-2 resin (Bio-Rad). In combination with α-1,3-fucosyltransferase and other glycosyltransferases, Lewis X and sialyl Lewis X have been synthesized successfully.
To synthesize P1 antigen, other enzymes such as galactokinase (GalK), β-1,3-N-acetylglucosaminyltransferase (HpGnT) and α-1,4-galactosyltransferase (LgtC) were expressed. After optimization of enzymatic reaction conditions, P1 antigen was synthesized successfully. Furthermore, an fluorous assisted separation was developed to facilitate the purification of enzymatic reaction products. By using a fluorous tag at the reducing end of saccharide, optimized conditions of the enzyme, and fluorous solide phase extraction, the separation time was remarkably reduced to 30 min for each seperation.
In addition, α-1,3-fucosyltransferase was found to tolerate a wide range of substrates appended with a fluorous tag such as LacNAc, sialyl LAcNAc, and LacdiNAc in this study. After fucosylation, these substrates were transformed to fluorous tagged Lewis X, sialyl Lewis X and dimeric Lewis X.
1. Meyer, H. P.; Eichhorn, E.; Hanlon, S.; Lutz, S.; Schurmann, M.; Wohlgemuth, R.; Coppolecchia, R., The use of enzymes in organic synthesis and the life sciences: perspectives from the Swiss Industrial Biocatalysis Consortium (SIBC). Catal. Sci.Technol. 2013, 3, 29-40.
2. Wong, C. H.; Halcomb, R. L.; Ichikawa, Y.; Kajimoto, T., Enzymes in Organic Synthesis : Application to the Problems of Carbohydrate Recognition. Angew. Chem. Int. Ed. 1995, 34, 521-546.
3. Theil, F.; Kunath, A.; Schick, H., ‘‘Double Enantioselection’’ by a Lipase- Catalyzed Transesterification of a Meso-Diol with a Racemic Carboxylic Ester. Tetrahedron Lett. 1992, 33, 3457-3460.
4. Shield, J. W.; Ferguson, H. D.; Bommarius, A. S.; Hatton, T. A., Enzymes in Reversed Micelles as Catalysts for Organic-Phase Synthesis Reactions. Ind. Eng. Chem. Fund. 1986, 25, 603-612.
5. Semenov, A. N.; Gachok, A. P.; Titov, M. I.; Martinek, K., Enzymes in Preparative Organic Synthesis. Chemical Equilibrium in Countercurrent Biphasic Water- Organic Systems. Biotechnol. Lett. 1989, 11, 875-880.
6. Takayama, S.; McGarvey, G. J.; Wong, C. H., Enzymes in organic synthesis: recent developments in aldol reactions and glycosylations. Chem. Soc. Rev. 1997, 26, 407-415.
7. Whalen, L. J.; Wong, C. H., Enzymes in organic synthesis: Aldolase-mediated synthesis of iminocyclitols and novel heterocycles. Aldrichim Acta 2006, 39, 63-71.
8. Koeller, K. M.; Wong, C. H., Enzymes for chemical synthesis. Nature 2001, 409, 232-240.
9. Weijers, C. A. G. M.; Franssen, M. C. R.; Visser, G. M., Glycosyltransferase- catalyzed synthesis of bioactive oligosaccharides. Biotechnol. Adv. 2008, 26, 436-456.
10. Moran, A. P.; Prendergast, M. M.; Appelmelk, B. J., Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease. FEMS Immunol Med Mic 1996, 16, 105-115.
11. Velupillai, P.; dos Reis, E. A.; dos Reis, M. G.; Harn, D. A., Lewis(x)-containing oligosaccharide attenuates schistosome egg antigen-induced immune depression in human schistosomiasis. Hum. Immunol. 2000, 61, 225-232.
12. Phillips, M.; Nudelman, E.; Gaeta, F.; Perez, M.; Singhal, A.; Hakomori, S.; Paulson, J., ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex. Science 1990, 250, 1130-1132.
13. Walz, G.; Aruffo, A.; Kolanus, W.; Bevilacqua, M.; Seed, B., Recognition by ELAM-1 of the sialyl-Lex determinant on myeloid and tumor cells. Science 1990, 250, 1132-1135.
14. Magnani, J. L.; Steplewski, Z.; Koprowski, H.; Ginsburg, V., Identification of the Gastrointestinal and Pancreatic Cancer-associated Antigen Detected by Monoclonal Antibody 19-9 in the Sera of Patients as a Mucin. Cancer Research 1983, 43, 5489-5492.
15. Kannagi, R.; Fukushi, Y.; Tachikawa, T.; Noda, A.; Shin, S.; Shigeta, K.; Hiraiwa, N.; Fukuda, Y.; Inamoto, T.; Hakomori, S.-i.; Imura, H., Quantitative and Qualitative Characterization of Human Cancer-associated Serum Glycoprotein Antigens Expressing Fucosyl or Sialyl-Fucosyl Type 2 Chain Polylactosamine. Cancer Research 1986, 46, 2619-2626.
16. Ramphal, J. Y.; Zheng, Z.L.; Perez, C.; Walker, L. E.; DeFrees, S. A.; Gaeta, F. C. A., Structure-Activity Relationships of Sialyl Lewis x-Containing Oligosaccharides. 1. Effect of Modifications of the Fucose Moiety. J. Med. Chem. 1994, 37, 3459-3463.
17. Engelstaedter, V.; Fluegel, B.; Kunze, S.; Mayr, D.; Friese, K.; Jeschke, U.; Bergauer, F., Expression of the carbohydrate tumour marker Sialyl Lewis A, Sialyl Lewis X, Lewis Y and Thomsen-Friedenreich Antigen in normal squamous epithelium of the uterine cervix, cervical dysplasia and cervical cancer. Histol. Histopathol. 2012, 27, 507-514.
18. Jorgensen, T.; Berner, A.; Kaalhus, O.; Tveter, K. J.; Danielsen, H. E.; Bryne, M., Up-Regulation of the Oligosaccharide Sialyl Lewis(X) - a New Prognostic Parameter in Metastatic Prostate-Cancer. Cancer Research 1995, 55, 1817-1819.
19. Kannagi, R., Molecular mechanism for cancer-associated induction of sialyl Lewis X and sialyl Lewis A expression-The Warburg effect revisited. Glycoconjugate J . 2003, 20, 353-364.
20. Tomlinson, J. S.; Kasraeian, S.; Alpaugh, M. L.; Barsky, S. H., Cooperative role of E-cadherin and sialyl-Lewis X/A-deficient MUC1 in the passive dissemination of tumor emboli in inflammatory breast cancer. FASEB J. 2002, 16, A367-A367.
21. Yusa, A.; Miyazaki, K.; Kimura, N.; Izawa, M.; Kannagi, R., Epigenetic Silencing of the Sulfate Transporter Gene DTDST Induces Sialyl Lewis(x) Expression and Accelerates Proliferation of Colon Cancer Cells. Cancer Research 2010, 70, 4064-4073.
22. Lomberg, H.; Jodal, U.; Eden, C. S.; Leffler, H.; Samuelsson, B., P1 Blood Group and Urinary Tract Infection. Lancet 1981, 1, 551-552.
23. Armstrong, G. D.; Fodor, E.; Vanmaele, R., Investigation of Shiga-Like Toxin Binding to Chemically Synthesized Oligosaccharide Sequences. J. Infect. Dis. 1991, 164, 1160-1167.
24. Nataro, J. P.; Kaper, J. B., Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 1998, 11, 403-403.
25. Dahmen, J.; Frejd, T.; Magnusson, G.; Noori, G.; Carlstrom, A. S., Synthesis of Spacer-Arm, Lipid, and Ethyl Glycosides of the Trisaccharide Portion [α-D-Gal-(1-4)-β-D-Gal-(1-4)-β-D-Glc] of the Blood-Group Pk Antigen : Preparation of Neoglycoproteins. Carbohydr. Res. 1984, 127, 15-25.
26. Liu, Z. Y.; Lu, Y. Q.; Zhang, J. B.; Pardee, K.; Wang, P. G., P1 trisaccharide (Galα1,4Galβ1,4GlcNAc) synthesis by enzyme glycosylation reactions using recombinant Escherichia coli. Appl. Environ. Microbiol. 2003, 69, 2110- 2115.
27. Wang, W. J.; Jin, C.; Guo, L. N.; Liu, Y.; Wan, Y.; Wang, X.; Li, L.; Zhao, W.; Wang, P. G., Preparation of oligosaccharides by homogenous enzymatic synthesis and solid phase extraction. Chem. Commun. 2011, 47, 11240-11242.
28. Frey, P. A., The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB J. 1996, 10, 461-470.
29. Wong, C. H.; Haynie, S. L.; Whitesides, G. M., Enzyme-catalyzed synthesis of N-acetyllactosamine with in situ regeneration of uridine 5'-diphosphate glucose and uridine 5'-diphosphate galactose. J.of Org. Chem. 1982, 47, 5416-5418.
30. Ichikawa, Y.; Liu, J. L. C.; Shen, G. J.; Wong, C. H., A highly efficient multienzyme system for the one-step synthesis of a sialyl trisaccharide: in situ generation of sialic acid and N-acetyllactosamine coupled with regeneration of UDP-glucose, UDP-galactose and CMP-sialic acid. J. Am. Chem. Soc. 1991, 113, 6300-6302.
31. Zervosen, A.; Elling, L., A Novel Three-Enzyme Reaction Cycle for the Synthesis of N-Acetyllactosamine with in Situ Regeneration of Uridine 5‘-Diphosphate Glucose and Uridine 5‘-Diphosphate Galactose. J. Am. Chem. Soc. 1996, 118, 1836-1840.
32. Zhang, J. B.; Kowal, P.; Chen, X.; Wang, P. G., Large-scale synthesis of globotriose derivatives through recombinant E-coli. Org Biomol Chem 2003, 1, 3048-3053.
33. Chien, W. T.; Liang, C. F.; Yu, C. C.; Lin, J. H.; Wu, H. T.; Lin, C. C., Glucose 1-Phosphate Thymidylyltransferase in the Synthesis of Uridine 5 '-Diphosphate Galactose and its Application in the Synthesis of N-Acetyllactosamine. Adv. Synth. Catal. 2012, 354, 123-132.
34. Hoffmeister, D.; Yang, J.; Liu, L.; Thorson, J. S., Creation of the first anomeric D/L-sugar kinase by means of directed evolution. P. Natl. Acad. Sci. U.S.A. 2003, 100, 13184-13189.
35. Yang, J.; Fu, X.; Liao, J. C.; Liu, L.; Thorson, J. S., Structure-based engineering of E-coli galactokinase as a first step toward in vivo glycorandomization. Chem. Biol. 2005, 12, 657-664.
36. Rempel, B. P.; Withers, S. G., Covalent inhibitors of glycosidases and their applications in biochemistry and biology. Glycobiology 2008, 18, 570-586.
37. Burkart, M. D.; Vincent, S. P.; Duffels, A.; Murray, B. W.; Ley, S. V.; Wong, C. H., Chemo-enzymatic synthesis of fluorinated sugar nucleotide: Useful mechanistic probes for glycosyltransferases. Bioorgan. Med. Chem. 2000, 8, 1937-1946.
38. Hartman, M. C. T.; Jiang, S.; Rush, J. S.; Waechter, C. J.; Coward, J. K., Glycosyltransferase Mechanisms: Impact of a 5-Fluoro Substituent in Acceptor and Donor Substrates on Catalysis. Biochemistry 2007, 46, 11630-11638.
39. Frantom, P. A.; Coward, J. K.; Blanchard, J. S., UDP-(5F)-GlcNAc Acts as a Slow-Binding Inhibitor of MshA, a Retaining Glycosyltransferase. J. Am. Chem. Soc. 2010, 132, 6626- 6627.
40. Caputi, L.; Rejzek, M.; Louveau, T.; O’Neill, E. C.; Hill, L.; Osbourn, A.; Field, R. A., A one-pot enzymatic approach to the O-fluoroglucoside of N-methylanthranilate. Bioorgan. Med. Chem. 2013, 21, 4762-4767
41. Graninger, M.; Kneidinger, B.; Bruno, K.; Scheberl, A.; Messner, P., Homologs of the Rml Enzymes from Salmonella enterica Are Responsible for dTDP-β-l-Rhamnose Biosynthesis in the Gram-Positive Thermophile Aneurinibacillus thermoaerophilus DSM 10155. Appl. Environ. Microbiol. 2002, 68, 3708-3715.
42. Timmons, S. C.; Mosher, R. H.; Knowles, S. A.; Jakeman, D. L., Exploiting Nucleotidylyltransferases To Prepare Sugar Nucleotides. Org. Lett. 2007, 9, 857-860.
43. Stevenson, G.; Andrianopoulos, K.; Hobbs, M.; Reeves, P. R., Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J. Bacteriol. 1996, 178, 4885-4893.
44. Tonetti, M.; Sturla, L.; Bisso, A.; Benatti, U.; DeFlora, A., Synthesis of GDP-L-fucose by the human FX protein. J. Bio.l Chem. 1996, 271, 27274-27279.
45. Ma, B.; Simala-Grant, J. L.; Taylor, D. E., Fucosylation in prokaryotes and eukaryotes. Glycobiology 2006, 16, 158r-184r.
46. Becker, D. J.; Lowe, J. B., Fucose: biosynthesis and biological function in mammals. Glycobiology 2003, 13, 41r-53r.
47. Coyne, M. J.; Reinap, B.; Lee, M. M.; Comstock, L. E., Human symbionts use a host-like pathway for surface fucosylation. Science 2005, 307, 1778-1781.
48. Nunez, H. A.; Oconnor, J. V.; Rosevear, P. R.; Barker, R., The Synthesis and Characterization of Alpha-L-Fucopyranosyl and Beta-Fucopyranosyl Phosphates and GDP-Fucose. Can. J. Chem. 1981, 59, 2086-2095.
49. Gokhale, U. B.; Hindsgaul, O.; Palcic, M. M., Chemical Synthesis of GDP-Fucose Analogs and Their Utilization by the Lewis α(1-4) Fucosyl-Transferase. Can. J. Chem. 1990, 68, 1063-1071.
50. Ichikawa, Y.; Sim, M. M.; Wong, C. H., Efficient Chemical Synthesis of GDP-Fucose. J. Org. Chem. 1992, 57, 2943-2946.
51. Adelhorst, K.; Whitesides, G. M., Large-Scale Synthesis of Beta-L-Fucopyranosyl Phosphate and the Preparation of Gdp-Beta-L-Fucose. Carbohydr. Res. 1993, 242, 69-76.
52. Wittmann, V.; Wong, C. H., 1H-tetrazole as catalyst in phosphomorpholidate coupling reactions: Efficient synthesis of GDP-fucose, GDP-mannose, and UDP-galactose. J. Org. Chem. 1997, 62, 2144-2147.
53. Albermann, C.; Distler, J.; Piepersberg, W., Preparative synthesis of GDP-beta-L-fucose by recombinant enzymes from enterobacterial sources. Glycobiology 2000, 10, 875-881.
54. Lee, W. H.; Han, N. S.; Park, Y. C.; Seo, J. H., Modulation of guanosine 5 '- diphosphate-D-mannose metabolism in recombinant Escherichia coli for production of guanosine 5 '-diphosphate-L-fucose. Bioresour. Technol. 2009, 100, 6143-6148.
55. Kotake, T.; Hojo, S.; Tajima, N.; Matsuoka, K.; Koyama, T.; Tsumuraya, Y., A Bifunctional Enzyme with L-Fucokinase and GDP-L-fucose Pyrophosphorylase Activities Salvages Free L-Fucose in Arabidopsis. J. Bio.l Chem. 2008, 283, 8125-8135.
56. Yi, W.; Liu, X. W.; Li, Y. H.; Li, J. J.; Xia, C. F.; Zhou, G. Y.; Zhang, W. P.; Zhao, W.; Chen, X.; Wang, P. G., Remodeling bacterial polysaccharides by metabolic pathway engineering. P. Nat.l Acad. Sci. U.S.A. 2009, 106, 4207-4212.
57. Wang, W.; Hu, T. S.; Frantom, P. A.; Zheng, T. Q.; Gerwe, B.; del Amo, D. S.; Garret, S.; Seidel, R. D.; Wu, P., Chemoenzymatic synthesis of GDP-L-fucose and the Lewis X glycan derivatives. P. Nat.l Acad. Sci. U.S.A. 2009, 106, 16096- 16101.
58. Zhao, G. H.; Guan, W. Y.; Cai, L.; Wang, P. G., Enzymatic route to preparative-scale synthesis of UDP-GlcNAc/GalNAc, their analogues and GDP-fucose. Nat. Protoc. 2010, 5, 636-646.
59. Milewski, S.; Gabriel, L.; Olchowy, J., Enzymes of UDP-GlcNAc biosynthesis in yeast. Yeast 2006, 23, 1-14.
60. Menginlecreulx, D.; Vanheijenoort, J., Identification of the Glmu Gene Encoding N-Acetylglucosamine-1-Phosphate Uridyltransferase in Escherichia-Coli. J. Bacteriol. 1993, 175, 6150-6157.
61. Menginlecreulx, D.; Vanheijenoort, J., Copurification of Glucosamine-1- Phosphate Acetyltransferase and N-Acetylglucosamine-1-Phosphate Uridyltransferase Activities of Escherichia Coli:Characterization of the Glmu Gene-Product as a Bifunctional Enzyme Catalyzing two Subsequent Steps in the Pathway for UDP-N-Acetylglucosamine Synthesis. J. Bacteriol. 1994, 176, 5788-5795.
62. Shao, J.; Zhang, J. B.; Nahalka, J.; Wang, P. G., Biocatalytic synthesis of uridine 5 '-diphosphate N-acetylglucosamine by multiple enzymes co-immobilized on agarose beads. Chem. Commun. 2002, 2586-2587.
63. Cai, L.; Guan, W.; Wang, W.; Zhao, W.; Kitaoka, M.; Shen, J.; O'Neil, C.; Wang, P. G., Substrate specificity of N-acetylhexosamine kinase towards N-acetylgalactosamine derivatives. Bioorg. Med. Chem. Lett. 2009, 19, 5433-5435.
64. Cai, L.; Guan, W. Y.; Kitaoka, M.; Shen, J.; Xia, C. F.; Chen, W. L.; Wang, P. G., A chemoenzymatic route to N-acetylglucosamine-1-phosphate analogues: substrate specificity investigations of N-acetylhexosamine 1-kinase. Chem. Commun. 2009, 2944-2946.
65. Fang, J. Q.; Guan, W. Y.; Cai, L.; Gu, G. F.; Liu, X. W.; Wang, P. G., Systematic study on the broad nucleotide triphosphate specificity of the pyrophosphorylase domain of the N-acetylglucosamine-1-phosphate uridyltransferase from Escherichia coli K12. Bioorg. Med. Chem. Lett. 2009, 19, 6429-6432.
66. Zhai, Y. F.; Liang, M.; Fang, J. Q.; Wang, X. Y.; Guan, W. Y.; Liu, X. W.; Wang, P.; Wang, F. S., NahK/GlmU fusion enzyme: characterization and one-step enzymatic synthesis of UDP-N-acetylglucosamine. Biotechnol. Lett. 2012, 34, 1321-1326.
67. 簡薇庭,國立清華大學化學研究所,博士論文,階段型合成醣核苷與其應用於合成聚N-乙醯乳糖胺,民國101年。
68. Nishimoto, M.; Kitaoka, M., Identification of N-acetylhexosamine 1-kinase in the complete lacto-N-biose I/Galacto-N-Biose metabolic pathway in Bifidobactetium longum. Appl. Environ. Microbiol. 2007, 73, 6444-6449.
69. Berliner, L. J.; Robinson, R. D., Structure-Function-Relationships in Lactose Synthase - Structural Requirements of the Uridine 5'-Diphosphate Galactose Binding-Site. Biochemistry 1982, 21, 6340-6343.
70. Srivastava, G.; Hindsgaul, O.; Palcic, M. M., Chemical Synthesis and Kinetic Characterization of UDP-2-Deoxy-D-Lyxo-Hexose(UDP-2-Deoxy-D-Galactose), a Donor-Substrate for β-(1-4)-D-Galactosyltransferase. Carbohydr Res. 1993, 245, 137-144.
71. Hindsgaul, O.; Kaur, K. J.; Srivastava, G.; Blaszczykthurin, M.; Crawley, S. C.; Heerze, L. D.; Palcic, M. M., Evaluation of Deoxygenated Oligosaccharide Acceptor Analogs as Specific Inhibitors of Glycosyltransferases. J. Biol. Chem. 1991, 266, 17858-17862.
72. Deng, C. H.; Chen, R. R., A pH-sensitive assay for galactosyltransferase. Anal. Biochem. 2004, 330, 219-226.
73. Lau, K.; Thon, V.; Yu, H.; Ding, L.; Chen, Y.; Muthana, M. M.; Wong, D.; Huang, R.; Chen, X., Highly efficient chemoenzymatic synthesis of β-1-4-linked galacto- sides with promiscuous bacterial β-1,4-galactosyltransferases. Chem. Commun. 2010, 46, 6066-6068.
74. Lin, S. W.; Yuan, T. M.; Li, J. R.; Lin, C. H., Carboxyl terminus of Helicobacter pylori α-1,3-fucosyltransferase determines the structure and stability. Biochemistry 2006, 45, 8108-8116.
75. Dumon, C.; Priem, B.; Martin, S. L.; Heyraud, A.; Bosso, C.; Samain, E., In vivo fucosylation of lacto-N-neotetraose and lacto-N-neohexaose by heterologous expression of Helicobacter pylori α-1,3 fucosyltransferase in engineered Escherichia coli. Glycoconjugate J. 2001, 18, 465-474.
76. Dumon, C.; Samain, E.; Priem, B., Assessment of the two Helicobacter pylori alpha-1,3-fucosyltransferase ortholog genes for the large-scale synthesis of LewisX human milk oligosaccharides by metabolically engineered Escherichia coli. Biotechnol. Progr. 2004, 20, 412-419.
77. Duffels, A.; Green, L. G.; Lenz, R.; Ley, S. V.; Vincent, S. P.; Wong, C. H., Chemoenzymatic synthesis of L-galactosylated dimeric sialyl Lewis X structures employing α-1,3-fucosyltransferase V. Bioorgan. Med. Chem 2000, 8, 2519-2525.
78. Barstrom, M.; Bengtsson, M.; Blixt, O.; Norberg, T., New derivatives of reducing oligosaccharides and their use in enzymatic reactions: efficient synthesis of sialyl Lewis a and sialyl dimeric Lewis x glycoconjugates. Carbohydr. Res. 2000, 328, 525-531.
79. Han, N. S.; Kim, T. J.; Park, Y. C.; Kim, J.; Seo, J. H., Biotechnological production of human milk oligosaccharides. Biotechnol. Adv. 2012, 30, 1268-1278.
80. Takashima, S.; Tachida, Y.; Nakagawa, T.; Hamamoto, T.; Tsuji, S., Quantitative analysis of expression of mouse sialyltransferase genes by competitive PCR. Biochem. Bioph. Res. Commun. 1999, 260, 23-27.
81. Chen, X.; Varki, A., Advances in the Biology and Chemistry of Sialic Acids. Acs Chem. Biol. 2010, 5, 163-176.
82. Yu, H.; Chokhawala, H.; Karpel, R.; Yu, H.; Wu, B. Y.; Zhang, J. B.; Zhang, Y. X.; Jia, Q.; Chen, X., A multifunctional Pasteurella multocida sialyltransferase: A powerful tool for the synthesis of sialoside libraries. J. Am. Chem. Soc. 2005, 127, 17618-17619.
83. Cheng, J. S.; Huang, S. S.; Yu, H.; Li, Y. H.; Lau, K.; Chen, X., Trans-sialidase activity of Photobacterium damsela α-2,6-sialyltransferase and its application in the synthesis of sialosides. Glycobiology 2010, 20, 260-268.
84. Cheng, J. S.; Yu, H.; Lau, K.; Huang, S. S.; Chokhawala, H. A.; Li, Y. H.; Tiwari, V. K.; Chen, X., Multifunctionality of Campylobacter jejuni sialyltransferase CstII: Characterization of GD3/GT3 oligosaccharide synthase, GD3 oligosaccharide sialidase, and trans-sialidase activities. Glycobiology 2008, 18, 686-697.
85. Logan, S. M.; Altman, E.; Mykytezuk, O.; Brisson, J. R.; Chandan, V.; St Michael, F.; Masson, A.; Leclerc, S.; Hiratsuka, K.; Smirnova, N.; Li, J. J.; Wu, Y. Y.; Wakarchuk, W. W., Novel biosynthetic functions of lipopolysaccharide rfaJ homologs from Helicobacter pylori. Glycobiology 2005, 15, 721-733.
86. Wakarchuk, W. W.; Cunningham, A.; Watson, D. C.; Young, N. M., Role of paired basic residues in the expression of active recombinant galactosyltransferases from the bacterial pathogen Neisseria meningitidis. Protein Eng. 1998, 11, 295-302.
87. Zhang, J. B.; Kowal, P.; Fang, J. W.; Andreana, P.; Wang, P. G., Efficient chemoenzymatic synthesis of globotriose and its derivatives with a recombinant α-1-4 galactosyltransferase. Carbohydr. Res. 2002, 337, 969-976.
88. Zhou, G. Y.; Liu, X. W.; Su, D. R.; Li, L.; Xiao, M.; Wang, P. G., Large scale enzymatic synthesis of oligosaccharides and a novel purification process. Bioorg. Med. Chem. Lett. 2011, 21, 311-314.
89. Su, D. M.; Eguchi, H.; Yi, W.; Li, L.; Wang, P. G.; Xia, C., Enzymatic synthesis of tumor-associated carbohydrate antigen Globo-H hexasaccharide. Org. Lett.2008, 10, 1009-1012.
90. Bonora, G. M.; Scremin, C. L.; Colonna, F. P.; Garbesi, A., Help (High-Efficiency Liquid-Phase) New Oligonucleotide Synthesis on Soluble Polymeric Support. Nucleic Acids Res. 1990, 18, 3155-3159.
91. Yang, B.; Jing, Y. Q.; Huang, X. F., Fluorous-Assisted One-Pot Oligosaccharide Synthesis. Eur. J. Org. Chem. 2010, 1290-1298.
92. Goto, K.; Miura, T.; Hosaka, D.; Matsumoto, H.; Mizuno, M.; Ishida, H. K.; Inazu, T., Rapid oligosaccharide synthesis on a fluorous support. Tetrahedron 2004, 60, 8845-8854.
93. Miura, T., Oligosaccharide synthesis using fluorous-tag method. Trends Glycosci. Glyc. 2003, 15, 351-358.
94. Miura, T.; Tsujino, S.; Satoh, A.; Goto, K.; Mizuno, M.; Noguchi, M.; Kajimoto,
T.; Node, M.; Murakami, Y.; Imai, N.; Inazu, T., Fluorescence modification of
Gb3 oligosaccharide and rapid synthesis of oligosaccharide moieties using
fluorous protective group. Tetrahedron 2005, 61, 6518-6526.
95. Tojino, M.; Mizuno, M., Towards oligosaccharide library synthesis by fluorous mixture method. Tetrahedron Lett. 2008, 49, 5920-5923.
96. Zhang, W., Fluorous synthesis of heterocyclic systems. Chem. Rev. 2004, 104, 2531-2556.
97. Horvath, I. T.; Rabai, J., Facile Catalyst Separation without Water - Fluorous Biphase Hydroformylation of Olefins. Science 1994, 266, 72-75.
98. Curran, D. P.; Luo, Z. Y., Fluorous synthesis with fewer fluorines (light fluorous synthesis): separation of tagged from untagged products by solid-phase extraction with fluorous reverse-phase silica gel. J. Am. Chem. Soc. 1999, 121, 9069-9072.
99. Blackburn, C., Visual Monitoring of Solid-Phase Extraction Using Chromogenic Fluorous Synthesis Supports. Acs Comb. Sci. 2012, 14, 150-154.
100. Matsugi, M.; Curran, D. P., Reverse fluorous solid-phase extraction: A new technique for rapid separation of fluorous compounds. Org. Lett. 2004, 6, 2717-2720.
101. Curran, D. P.; Ferritto, R.; Hua, Y., Preparation of a fluorous benzyl protecting group and its use in a fluorous synthesis approach to a disaccharide. Tetrahedron Lett. 1998, 39, 4937-4940.
102. Ko, K. S.; Park, G.; Yu, Y.; Pohl, N. L., Protecting-Group-Based Colorimetric Monitoring of Fluorous-Phase and Solid-Phase Synthesis of Oligoglucosamines. Org. Lett. 2008, 10, 5381-5384.
103. Chen, G.-S.; Pohl, N. L., Synthesis of Fluorous Tags for Incorporation of Reducing Sugars into a Quantitative Microarray Platform. Org. Lett.2008, 10, 785-788.
104. Jaipuri, F. A.; Pohl, N. L., Toward solution-phase automated iterative synthesis: fluorous-tag assisted solution-phase synthesis of linear and branched mannose oligomers. Org. Biomol. Chem. 2008, 6, 2686-2691.
105. Zhang, F.; Zhang, W.; Zhang, Y.; Curran, D. P.; Liu, G., Synthesis and Applications of a Light-Fluorous Glycosyl Donor. J. Org. Chem. 2009, 74, 2594-2597.
106. Park, G.; Ko, K. S.; Zakharova, A.; Pohl, N. L., Mono- vs. di-fluorous-tagged glucosamines for iterative oligosaccharide synthesis. J Fluorine Chem. 2008, 129, 978-982.
107. Zhang, Y.; Liu, B.; Liu, G., Facile synthesis of tetrasaccharide aided by fluorous chemistry toward a dengue virus vaccine. Mol. Divers. 2013, 17, 613-618.
108. Lue, R. Y. P.; Chen, G. Y. J.; Hu, Y.; Zhu, Q.; Yao, S. Q., Versatile protein biotinylation strategies for potential high-throughput proteomics. J. Am. Chem. Soc. 2004, 126, 1055-1062.
109. Chang, W. W.; Lee, C. H.; Lee, P. S.; Lin, J. W.; Hsu, C. W.; Hung, J. T.; Lin, J. J.; Yu, J. C.; Shao, L. E.; Yu, J.; Wong, C. H.; Yu, A. L., Expression of Globo H and SSEA3 in breast cancer, stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis. P. Natl. Acad. Sci. U.S.A. 2008, 105, 11667-11672.
110. 李泗芃. 國立清華大學化學研究所,碩士論文,探討嗜熱菌 Meiothermus taiwanensis ATCC BAA-400 之半乳糖激酶酵素動力學及應用於合成 Pk 抗原類似物,民國101年。
111. 林建宏,國立清華大學化學研究所,博士論文,Zanamivir衍生物作為流感病毒抑制劑之開發及氟標記結合化學酵素合成寡醣的研究與探討,民國102年。
112. 游景晴,國立清華大學化學研究所,博士論文,奈米粒子系統應用: 酵素固化與高通量酵素篩選平台開發,民國101年。
113. del Amo, D. S.; Wang, W.; Besanceney, C.; Zheng, T. Q.; He, Y. Z.; Gerwe, B.; Seidel, R. D.; Wu, P., Chemoenzymatic synthesis of the sialyl Lewis X glycan and its derivatives. Carbohydr. Res. 2010, 345, 1107-1113.
114. Martin, S. L.; Edbrooke, M. R.; Hodgman, T. C.; vandenEijnden, D. H.; Bird, M. I., Lewis X biosynthesis in Helicobacter pylori Molecular cloning of an α-1,3-fucosyltransferase gene. J. Biol. Chem. 1997, 272, 21349-21356.
115. Gokhale, U. B.; Hindsgaul, O.; Palcic, M. M., Chemical synthesis of GDP-fucose analogs and their utilization by the Lewis α-1,4-fucosyltransferase. Can. J.Chem. 1990, 68, 1063-1071.