研究生: |
嚴名豪 Yen, Ming-Hao. |
---|---|
論文名稱: |
以分子束磊晶再成長之氮化鋁鎵/氮化鎵蕭特基二極體研究 Study on AlGaN/GaN Schottky Barrier Diode by Molecular Beam Epitaxy Regrowth |
指導教授: |
黃智方
Huang, Chih-Fang |
口試委員: |
盧向成
Lu, Shiang-Chen 吳添立 Wu, Tian-Li |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 分子束磊晶 、穿隧接面 |
外文關鍵詞: | Molecular Beam Epitaxy, Tunnel Junction |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗中探討分子束磊晶系統再成長高濃度N型氮化鎵的四種方法,分別為直接成長法、遷移增強磊晶法、矽增強磊晶法和鎵金屬調整磊晶法,隨著不同方法的使用,濃度有逐漸提升的趨勢,其中鎵金屬調整法摻雜濃度可到1.04x1019 cm-3,此為上述方法可達到的最高濃度。在成長過程可透過III/IV比例去控制成長環境為二維或三維成長,這個比例為控制表面平坦度的關鍵。
使用分子束磊晶再成長高濃度N型氮化鎵於P GaN cap layer AlGaN/GaN上,並進一步實驗在元件上的可能性。由於高濃度摻雜的P型氮化鎵層和高濃度摻雜的再成長N型氮化鎵層,兩者接觸會形成穿隧接面,此接面有助於電流的傳導。量測再成長高濃度N型氮化鎵於P-GaN/AlGaN/GaN側向蕭特基二極體元件,大部份的元件On/Off ratio皆可以達到107~108,在10V時順向電流可達48 mA,且有0.79 A/mm的電流密度。再進一步進行崩潰電壓的量測,水平崩潰電壓可達405 V,垂直崩潰電壓則可達568 V。
In this study, the regrowth of high doping concentration N type GaN by molecular beam epitaxy was investigated. Four different growth conditions were used to improve the doping concentration including base line growth, migration enhanced epitaxy, Si enhanced epitaxy and Ga adjusted epitaxy. It is observed that the concentration is dramati-cally improved with different methods. Ga adjusted epitaxy can en-hance the concentration up to 1.04x1019 cm-3, which is the highest among these conditions. The III/V ratio was controlled to make the GaN film grown in 2-dimention or 3-dimention mode, which has a profound effect on the surface flatness.
The regrowth of a high doping concentration N type GaN was then applied on P type GaN cap layer on AlGaN/GaN to further explore it possibility on device performance. According to the high doping con-centrations of the P type GaN cap layer and the N type GaN regrowth layer, it is possible to form a tunnel junction in the device structure, which is beneficial for current conduction. From measurement results of fabricated regrowth N+ on P-GaN/AlGaN/GaN lateral SBDs, an on/off ratio greater than 107~108 order can be achieved. The best device shows 48 mA forward current at 10V, corresponding to a current density of 0.79 A/mm. The measured horizontal breakdown voltage and vertical breakdown voltage are 405 and 568V separately.
R. F. Davis, J. W. Palmour, J. A. Edmond, "A review of the status of diamond and silicon carbide devices for high-power -temperature and -frequency applications", IEDM, pp. 785-788, 1990.
B. J. Baliga, "Power semiconductor device figure of merit for high-
frequency applications", Electron Device Letters, vol. 10, no. 10, pp. 455-457,1989.
S. Nakamura, Y. Harada, M. Seno, "Novel metalorganic chemical vapor deposition system for GaN growth", Appl. Phys. Lett., vol. 58, pp. 2021-2023, 1991.
A. Y. Cho, K. Y. Cheng, "Growth of extremely uniform layers by rotating substrate holder with molecular beam epitaxy for applications to electro-optic and microwave devices", Appl. Phys. Lett., vol. 38, pp. 360-362, 1981.
B. Heying, R. Averbeck, L. F. Chen, E. Haus, H. Riechert, J. S. Speck, "Control of GaN surface morphologies using plasma-assisted molecular beam epitaxy", J. Appl. Phys., vol. 88, no. 4, pp. 1855-1-1855-6, 2000.
Brian M. McSkimming, Catherine Chaix, and James S. Speck, "High active nitrogen flux growth of GaN by plasma assisted molecular beam epitaxy ", Journal of Vacuum Science & Technology, A 33, 05E128, 2015
G. Koblmuller, P. Pongratz, R. Averbeck, and H. Riechert, "Nucleation Phenomena during Molecular Beam Epitaxy
of GaN Observed by Line-of-Sight Quadrupole Mass
Spectrometry ", phys. Stat, vol.194, no. 2, pp. 515–519, 2002.
S. Fernández-Garrido, G. Koblmüller, E. Calleja, and J. S. Speck, "In situ GaN decomposition analysis by quadrupole mass spectrometry and reflection high-energy electron diffraction ", J. Appl. Phys. 104, 033541, 2008
E. J. Tarsa, B. Heying, X. H. Wu, P. Fini, S. P. DenBaars, and J. S. Speck, "Homoepitaxial growth of GaN under Ga-stable and N-stable conditions by plasma-assisted molecular beam epitaxy", J. Appl. Phys., vol. 82, pp. 5472-5479, 1997.
Y. Cordier, F. Semond, P. Lorenzini, N. Grandjean, F. Natali, B. Damilano, J. Massies, V. Hoël, A. Minko, N. Vellas, C. Gaquiere, J. DeJaeger, B. Dessertene, S. Cassette, M. Surrugue, D. Adam, J.-C. Grattepain, R. Aubry, S. Delage, "MBE growth of AlGaN/GaN HEMTS on resistive Si (111) substrate with RF small signal and power performances", J. Cryst. Growth, vol. 251, pp. 811-815, 2003.
L. Esaki, " New phenomenon in narrow germanium p–n junctions ", Phys. Rev., vol. 109, no. 2, pp. 603-604, Jan. 1958.
John Simon, Ze Zhang, Kevin Goodman, Huili Xing, Thomas Kosel, Patrick Fay, and Debdeep Jena, "Polarization-Induced Zener Tunnel Junctions inWide-Band-Gap Heterostructures, "PRL 103, 026801, 2009
Sriram Krishnamoorthy, Thomas F. Kent, Jing Yang, Pil Sung Park, Roberto C. Myers, and Siddharth Rajan, "GdN Nanoisland-Based GaN Tunnel Junctions ", Nano Lett.,13,pp. 2570−2575, 2013.
Fatih Akyol, Sriram Krishnamoorthy, Yuewei Zhang, Jared Johnson, Jinwoo Hwang, and Siddharth Rajan, "Low-resistance GaN tunnel homojunctions with 150 kA/cm2 current and repeatable negative differential resistance ", Appl. Phys. Lett. 108, 131103, 2016
T. Takeuchi, G. Hasnain, M. Hueschen, C. Kocot, M. Blomqvist, Y.-L. Chang, D. Lefforge, R. Schneider, M. R. Krames, L. W. Cook, S. A. Stockman, "GaN-based light emitting diodes with tunnel junctions", Jpn. J. Appl. Phys., vol. 40, pp. L861-L863, 2001.
S. R. Jeon, M. S. Cho, M.A. Yu and G. M. Yang, "GaN-based light-emitting diodes using tunnel junctions", IEEE J. of Selected Topics in Quantum Electron., Vol. 8, No. 4, pp. 739-743, 2002.
Sriram Krishnamoorthy, Fatih Akyol and Siddharth Rajan, "InGaN/GaN tunnel junctions for hole injection in GaN light emitting diodes ", Appl. Phys. Lett. 105, 141104, 2014
Yuewei Zhang, Sriram Krishnamoorthy, Fatih Akyol, Andrew A. Allerman, Michael W. Moseley, Andrew M. Armstrong, and Siddharth Rajan, "Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions ", Appl. Phys. Lett., vol. 109, 121102, 2016
M. F. Schubert, "Polarization-charge tunnel junctions for ultraviolet light-emitters without p-type contact", Appl. Phys. Lett., vol. 96, no. 3, pp. 031102-1-031102-3, 2010.
M. Malinverni, D. Martin, and N. Grandjean, "InGaN based micro light emitting diodes featuring a buried GaN tunnel junction ", Appl. Phys. Lett.,vol. 107, 051107, 2015
B. P. Yonkee, E. C. Young, S. P. DenBaars, S. Nakamura, J. S. Speck, "Silver free III-nitride flip chip light-emitting-diode with wall plug efficiency over 70% utilizing a GaN tunnel junction", Appl. Phys. Lett., vol. 109, pp. 191104, 2016.
H. Yamaguchi, M. Kawashima, and Y. Horikoshi, “Migration-enhanced epitaxy” , Appl. Surf. Sci., vol. 33–34, pp. 406–412, 1988.
Yuen-Yee Wong, Edward Yi Chang, Yue-Han Wu, Mantu K. Hudait, Tsung-Hsi Yang, Jet-Rung Chang, Jui-Tai Ku, Wu-Ching Chou, Chiang-Yao Chen, Jer-Shen Ma, and Yueh-Chin Lin, "Dislocation reduction in GaN film using Ga-lean GaN buffer layer and migration enhanced epitaxy ", Thin Solid Films, pp. 6208–6213, 2011
F. A. Faria, J. Guo, P. Zhao, G. Li, P. K. Kandaswamy, M. Wistey, H. G. Xing, D. Jena, "Ultra-low resistance ohmic contacts to GaN with high Si doping concentrations grown by molecular beam epitaxy", Appl. Phys. Lett., vol. 101, no. 3, pp. 032109, 2012.
F. Sacconi, A. D. Carlo, P. Lugli, and H. Morkoç, “Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN–GaN heterojunction modulation doped FETs,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 450–457, 2001
I. P. Smorchkova, L. Chen, T. Mates, L. Shen, S. Heikman, B. Moran, S. Keller, S. P. DenBaars, J. S. Speck, and U. K. Mishra., "AlN/GaN and (AlGa)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy", J. Appl. Phys., vol. 90, no. 10, pp. 5196-5201, 2001.
O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures", J. Appl. Phys., vol. 85, no. 6, pp. 3222, 1999.
J.-K. Kim, J.-L. Lee, J. W. Lee, H. E. Shin, Y. J. Park, T. Kim, "Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment", Appl. Phys. Lett., vol. 73, no. 20, pp. 2953-2955, 1998.
F. Lee, L.-Y. Su, C.-H. Wang, Y.-R. Wu, J. Huang, "Impact of gate metal on the performance of p-GaN/AlGaN/GaN high electron mobility transistors", IEEE Electron Device Lett., vol. 36, no. 3, pp. 232-234, 2015.
S. K. Cheung, N. W. Cheung, "Extraction of Schottky diode parameters from forward current-voltage characteristics", Appl. Phys. Lett., vol. 49, no. 2, pp. 85-87, 1986.
W. Lim, J.-H. Jeong, J.-H. Lee, S.-B. Hur, J.-K. Ryu, K.-S. Kim, T.-H. Kim, S. Y. Song, Y.-I. Yang, S. J. Pearton, "Temperature dependence of current-voltage characteristics of Ni–AlGaN/GaN Schottky diodes", Appl. Phys. Lett., vol. 97, pp. 242103, 2010.
Geng-Yen Lee, Hsueh-Hsing Liu, and Jen-Inn Chyi, "High-Performance AlGaN/GaN Schottky Diodes with an AlGaN/AlN Buffer Layer", IEEE Electron Device Lett., vol. 32, no. 11, pp. 1519-1521, 2011.
Liang-Yu Su, Finella Lee, and Jian Jang Huang, "Enhancement-Mode GaN-Based High-Electron Mobility Transistors on the Si Substrate With a P-Type GaN Cap Layer", IEEE Trans. Electron Devices, vol. 61, no. 2, 2014.