簡易檢索 / 詳目顯示

研究生: 周冠廷
Chou, Kuan-Ting
論文名稱: 機器學習在動力學系統之應用
Applications of Machine Learning in Dynamical Systems
指導教授: 王道維
Wang, Daw-Wei
口試委員: 張明強
洪在明
陳柏中
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 53
中文關鍵詞: 機器學習神經極性果蠅連接組多體物理
外文關鍵詞: Machine Learning, Neuronal Polarity, Drosophila, Connectome, Many-Body Physics
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文包含了兩種在不同動力學系統的應用:果蠅腦神經極性之分類、有時變外加場之一維易辛模型(Ising Model)。
    在論文的第一個部分,我們開發了一種機器學習算法,即基於節點的神經極性分類器(NPIN),以識別神經網絡中資訊流的方向。這是理解腦複雜動態的關鍵之一。我們所提出的模型僅以神經節點的資訊進行訓練,包含細胞體特徵(包含從給定節點到細胞體的空間資訊),和局部特徵(包含給定節點的形態資訊)。透過使用分佈在果蠅大腦不同區域的213個projection neurons的資料集並考慮節點間的空間相關性,NPIN為神經元極性分類提供了高準確度(大於96%),甚至對於擁有兩簇以上的複雜神經也是如此。最後,我們進一步應用NPIN在分類麗蠅的神經極性,該物種的神經數據相較之下少很多。從我們的研究結果顯示,NPIN是分類昆蟲神經極性並繪製出大腦神經網絡資訊流的強大工具。這個部分與此論文相關:Identification of Neuronal Polarity by Node-Based Machine Learning, Chen-Zhi Su, Kuan-Ting Chou, Hsuan-Pei Huang, Chung-Chuan Lo , and Daw-Wei Wang. bioRxiv: https://biorxiv.org/cgi/content/short/2020.06.20.160564v1 (submitted to Neuroninformatics)
    在論文的第二部分,我們建構了一個經過調整的遞歸神經網絡(RNN),此網絡可以預測不同參數範圍的物理量。此網絡的結構包含:將系統初始狀態映射至RNN的初始隱藏層變數的編碼器、跟隨RNN一連串隱藏層並透過提取隱藏層變數預測出目標物理量的解碼器。我們將此方法應用於具有時變外加磁場的一維易辛模型。我們藉由在特定的參數範圍內,使用短時間的數據訓練此模型,以預測在其他參數範圍中較長時間尺度的物理量(例如:相關函數、磁化強度和總能量等)。透過調整外加磁場,我們還可以將此方法應用於不同的相。我們的模型顯示了將機器學習應用於多體動力學的可能性。


    This thesis contains applications of machine learning in two different dynamical systems: Identification of Neuronal Polarity in Drosophila Brain, and 1D Ising Model with Arbitrary Time-Dependent External Field.
    In the first part, we develop a machine learning algorithm, Node-Based Polarity Identifier of Neurons (NPIN), to identify the directions of signal flows in neuronal networks, which is one of the keys for understanding the intricate information dynamics of a living brain. The proposed model is trained by nodal information only and includes both Soma Features (which contain spatial information from a given node to a soma) and Local Features (which contain morphological information of a given node). By using a dataset of 213 projection neurons distributed in different regions of a Drosophila brain and considering the spatial correlations between nodal polarities, NPIN provided high accuracy (>96.0%) for the classification of neuronal polarity, even for complex neurons containing more than two dendrite/axon clusters. Finally, we further apply NPIN to classify the neuronal polarity of the blowfly, which has much less neuronal data available. Our results demonstrate that NPIN is a powerful tool to identify the neuronal polarity of insects and to map out the signal flows in the brain’s neuronal networks. This topic is associated to the project:Identification of Neuronal Polarity by Node-Based Machine Learning, Chen-Zhi Su, Kuan-Ting Chou, Hsuan-Pei Huang, Chung-Chuan Lo , and Daw-Wei Wang. bioRxiv: https://biorxiv.org/cgi/content/short/2020.06.20.160564v1 (submitted to Neuroninformatics)
    In the second part, we construct a modified Recurrent Neural Network (RNN) that can predict dynamical observables in different parameter regimes. Our architecture involves an encoder mapping the initial configuration of a given system to the initial hidden variables of RNN, and a decoder following the successive layers extracting the information of hidden variables and giving prediction of targeted quantities. We apply this method to 1D Ising Model with a time-depenent transverse magnetic field. We train the model in a certain parameter regime for a short time, but could simulate physical quantities (such as correlation functions, transverse magnetization, and total energy etc.) in some other parameter regime for a long time behavior. By varying the external magnetic field, we can also apply our approach in the different phases. Our model shows the possibility to apply machine learning in many-body dynamics.

    摘要 Abstract Acknowledgements ------------------------------------------ i Content ------------------------------------------ ii I Identification of Neuronal Polarity ------------------------------------------ 1 1 Introduction ------------------------------------------ 2 2 Neuronal Morphology ------------------------------------------ 4 2.1 Dataset ------------------------------------------ 4 2.2 Feature distribution ------------------------------------------ 6 3 Method ------------------------------------------ 9 3.1 Standard Representation ------------------------------------------ 12 3.2 Nodal Polarity ------------------------------------------ 15 3.3 Feature Extraction ------------------------------------------ 17 3.4 Machine Learning Models ------------------------------------------ 17 3.5 Implementation and Spatial Correlation of Nodal Polarity ------------------------------------------ 18 4 Result ------------------------------------------ 19 4.1 Identification Results of Model I: Using Both Soma Features and Local Features ------------------------------------------ 20 4.2 Identification Results of Model II: Using Soma Features Only ------------------------------------------ 22 4.3 Comparison of Models I, II, and III for Complex Neurons ------------------------------------------ 23 4.4 Application: Transfer Learning ------------------------------------------ 26 5 Discussion ------------------------------------------ 29 5.1 Comparison ------------------------------------------ 29 5.2 Neurons with low accuracy ------------------------------------------ 30 5.3 Other types ------------------------------------------ 31 6 Conclusion ------------------------------------------ 32 II Toward Quantum Many-Body Dynamics ------------------------------------------ 33 7 Introduction ------------------------------------------ 34 8 Quantum Ising Model ------------------------------------------ 36 8.1 Transverse Field Ising Chain ------------------------------------------ 36 8.2 Time Dependent External Field ------------------------------------------ 38 8.3 Physical Observables ------------------------------------------ 39 9 Modified Recurrent Neural Network ------------------------------------------ 40 9.1 Overview ------------------------------------------ 40 9.2 Initial Configuration Encoder ------------------------------------------ 41 9.3 Evolution of Hidden Variables ------------------------------------------ 42 9.4 Physical Observable Decoder ------------------------------------------ 43 10 Result ------------------------------------------ 44 10.1 Prediction Result of Task I: Training Data in two different perturbative regimes ------------------------------------------ 44 10.2 Prediction Result of Task II: Training Data in a perturbative regime ------------------------------------------ 47 11 Discussion and Conclusion ------------------------------------------ 50 References ------------------------------------------ 51

    [1] A. S. Chiang et al., Curr. Biol. 21, 1 (2011).
    [2] L. Kuan et al., Methods 73, 4 (2015).
    [3] N. Milyaev et al., Bioinformatics (Oxford, England) 28, 411 (2012).
    [4] R. Parekh, and G.A. Ascoli, Neuron 77 , 1017 (2013).
    [5] H. Peng et al., Neuron 87, 252 (2015).
    [6] K. Shinomiya et al., The Journal of Comparative Neurology 519, 807 (2011).
    [7] M. Xu et al., PLoS. One 8, 54050 (2013).
    [8] C. C. Lo, and A,-S, Chiang, Journal of Neuroscience 36, 1137 (2016).
    [9] A. M. Craig, and G. Banker, Annual Review of Neuroscience 17, 267 (1994).
    [10] A. Matus et al., Proceedings of the National Academy of Sciences of the United Sates of America 78, 3010 (1981).
    [11] J. Wang et al., Neuron 43, 663 (2004).
    [12] H. Cuntz et al., PLoS. Comput. Biol. 4, 1000251 (2008).
    [13] Y.-H. Lee et al., Neuroinformatics 12, 487 (2014).
    [14] Y. LeCun et al., IEEE 86, 2278 (1998).
    [15] A. Krizvsky et al., Commun. ACM, 60, 84 (2012).
    [16] Y. LeCun et al., Nature 521, 436 (2015).
    [17] H. Asri et al., Procedia Computer Science 83, 1064 (2016).
    [18] T. M. Malta et al., Cell 173, 338 (2018).
    [19] H. Mohsen et al., Future Computing and Informatics Journal 3, 68 (2018).
    [20] U. Hanesch et al., Cell and Tissue Research 258, 441 (1989).
    [21] L. R. Squire, D. Berg, F. Bloom, S. Lac, and A. Ghosh, Fundamental Neuroscience, Third Edition (Academic Press, 2008).
    [22] C, Y. Lee et al., Neuroinformatics 12, 487 (2013).
    [23] K. F. Fischbach et al., Cell and Tissue Research 258, 441 (1989).
    [24] M. Wu et al., eLife. 5, 21022 (2016).
    [25] Y. C. Huang et al., Frontiers in Neuroinformatics 12 (2019).
    [26] T. Kinoshita, T. Wenger, and D. Weiss, Nature 440, 900 (2006).
    [27] I. Bloach, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885964 (2008).
    [28] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen, and U. Sen, Advances in Physics 56, 243 (2007).
    [29] S. Hofferberth et al., Nature 449, 324327 (2007).
    [30] S. Trotzky, T. Chen, A. Flesch et al., Nature 8, 325 (2012).
    [31] D. Fioretto, and G. Mussardo, New Journal of Physics 12, 055015 (2010).
    [32] J.-y. Choi, et al., Science 352, 1547 (2016).
    [33] S. J. Ran et al., Two-Dimensional Tensor Networks and Contraction Algorithms, Tensor Network Contractions, Lecture Notes in Physics 964 (Springer, Cham, 2020)
    [34] G. Carleo, and M. Troyer, Science 355, 602 (2017).
    [35] P. Czarnik, et al., Phys. Rev. B, 99, 035115 (2019).
    [36] J. Dziarmaga, Phys. Rev, Lett. 95, 245701 (2005).
    [37] T. Puskarov, and D. Schuricht, SciPost Phys. 1, 003 (2016).
    [38] E. Barouch, and B. M. McCoy, Phys. Rev. A 3, 786 (1971).
    [39] W. H. Press et al., Numerical Recipes in C++, Second Edition (Cambridge University Press, 1993).

    QR CODE