研究生: |
傅啟俊 Chi-Chun Fu |
---|---|
論文名稱: |
UV奈米壓印微影技術的製程發展 Process Development on UV Nanoimprint Lithography |
指導教授: |
葉鳳生
Fon-Shan Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 奈米壓印微影技術 、奈米結構模仁製作 、脫模劑 、蝕刻 |
外文關鍵詞: | UV nanoimprint, Lift-off, PAK, HSQ mold, nanoimprint |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著ULSI技術快速發展,積體電路所要求的密集度越來越高,根據2006年ITRS(International Technology Roadmap for Semicinductors)的微影製程中,元件關鍵尺寸小於32奈米以下正在開發研究的技術包含EUV、沈浸法、奈米壓印或ML2等方式。奈米壓印微影技術具有製程溫度低、產出速度快、製程壓力低、成本低與製程簡單等特性。UV奈米壓印製程重點包含模仁製作、光阻材料、奈米壓印與蝕刻實驗之研究探討。
首先,為了降低成本,本論文使用HSQ/ITO/Glass取代傳統quartz製作UV模仁,成功以低劑量(360μC/cm2)電子束直寫技術,搭配顯影濃度(6%)、蝕刻時間(10s),使用步進式軟、硬烤方式使分別製作出width/space =1:10,線寬是70nmUV模仁。
UV奈米壓印實驗部份,以蒸鍍上脫膜劑(F13-TCS)的模仁,成功以室溫、壓印壓力595~870bar、壓印時間2~20分鐘將模仁上的圖形轉印在光阻(PAK-01-200)上,壓印後並使用波長300-370nm紫外光使其感光硬化,由SEM圖觀察轉印圖形變化,並從中挑選最佳壓印條件。
為完成Lift-off 技術之發展,接著本實驗選擇上述最佳壓印條件進行後續蝕刻實驗,並以SEM圖觀察蝕刻結果。最後為鋁蒸鍍實驗並完成lift-off製程,鋁奈米線線寬為140 nm與鋁線高度56 nm。
As progress of IC fabrication technology, the device size was scaling down gradually. According to the prediction of ITRS (International Technology Roadmap for Semiconductors Conference) of 2006, lithography technologies below 32nm includes EUV, innovative 193nm immersion with water, imprint and ML2 methods. The imprint lithography technology has simple process, low cost, and high throughput and has potential in IC process. The key points of UV nanoimprint lithograph include mold fabrication, material of photoresist, process of imprinting and etching.
First at all, in order to cost down, we fabricated HSQ/ITO/Glass mould to substitute for conventional quartz. And using e-beam lithography with low dose (360□C/cm2) to define patterns. An HSQ film developed by TMAH concentration is 6% and etch time is 10sec. The heat cycle included soft bake and hardback at step-like temperature controlled with various time intervals. UV mold with various width/space=1:10 for line width 70nm were fabricated.
For UV nanoimprint, we coated release layer (F13-TCS) on HSQ mold. Then, we succeed to transfer HSQ patterns on PR (PAK-01-200) which is effected by UV wavelength 300 ~ 370 nm at room temperature with the imprint pressure is 595∼870 bar and imprint time is 2 ~ 20 min. The SEM was then taken to observe the transferred patterns. The optimum condition can be chose.
Secondly, we use the above optimum imprint condition to continue the RIE experiment for further development of lift-off technique. SEM was taken to observe the patterns after RIE process. Aluminum was then evaporated on the substrate. From SEM pictures, Aluminum nano wires with the line width and height, 140 nm and 56 nm, were performed.
[1]T.S. Huck et al., Current Opinion in Solid State and
Materials Science, Polymers in nanotechnology, 6, 2002,
3-8.
[2] http://www.itrs.net/links/2006Update/FinalToPost/
08_Lithography2006Update.pdf
[3] 陳釧鋒, 機械工業雜誌, 255期, p151-162
[4] Y. Xia, X.M. Zhao and G.M. Whitesides, Microelectronic
Engineering, PP. 255-268, 1996
[5] Y. Xia, G. M. Whitesides, Angew. Chem.Int.Vol.37,pp.550-
575, 1998
[6] C.M. Sotomayor Torresa, , S. Zankovych, J. Seekamp,
A.P.Kam, C. Clavijo Ceden˜o, T. Hoffmann, J. Ahopelto,
F.Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner,
M.V.Maximov, B. Heidari, Mater. Sci. Eng. C Vol.23, 23-
31, 2003
[7] T.C. Bailey, D.J. Resnick, D. Mancini, et al, ”
Template fabrication schemes for step and flash imprint
lithography” Microelectronic Engineering 61-62 (2002)
461-467
[8] D.P. Mancini, K.A. Gehoski, E. Ainley, et al,
“Hydrogen silsesquioxane for direct electron-beam
patterning of step and flash imprint lithography
templates” J. Vac. Sci. Technol. B20(6),2002
[9] B.J. Smith, N.A. Stacey, J.P. Donnelly, D.M. Onsongo,
T.C.BaileyC.J. Mackay, D.J. Resnick, W.J. Dauksher, D.
Mancini, K.J. NordquistS.V. Sreenivasan, S.K. Banerjee,
J.G. Ekerdt, and C.G. Willson. “Employing Step and
Flash Imprint Lithography for Gate Level Patterning of
a MOSFET Device”
[10]Hein Lee, Gun-Young Jung, “Full wafer scale near zero
residual nano-imprinting lithography using UV curable
monomer solution” Microelectronic Engineering 77(2005)
42-47
[11] Stephen Y. Chou, Peter R. Krauss, Wei Zhang, Lingjie
Guo, and Lei Zhuang, J. Vac. Sci. Technol. B 15, 6
(1997).
[12] Hideo Namatsu, Yasuo Takahashi, et al, “Three-
dimensional siloxane resist for the formation of
nanopatterns with minimum linewidth fluctuations” J.
Vac. Sci. Technol. B 16(1), 1998
[13] 魏易玄, “低介電常數材料氫矽酸鹽類於製程整合上的應用”
中山大學 91年碩士論文
[14] T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, and
Y, Ueda, Langmuir 15, 4321(1999)
[15] Jem-Kun Chen, Fu-Hsiang Ko, Kuen-Fong Hsieh, Cheng-
Tung Chou, Feng-Chih Chang, J. Vac. Sci. Technol.
B22,3233(2004)
[16] TOYO GOSEI co.,LTD. T.G.C Research Laboratory ,
Material Safety Data Sheet.
[17] J. Resnick, et al. “Step & flash imprint lithography
“ ISSN:1369 7021 @ Elsevier Ltd 2005
[18] Michael J. Word, et al. “Nanometer-period gratings in
hydrogen silsesquioxane fabricated by electron beam
lithography” J. Vac. Sci. Technol. B 21(6), Nov/Dec
2003
[19] D.J. Resnick, et al. “Improve step and flash imprint
lithography templates for nanofabrication”
Microelectronic Engineering 69(2003)412-419
[20] D.J. Resnick, et al. “Improve step and flash imprint
lithography templates for nanofabrication”
Microelectronic Engineering 69(2003)412-419
[21] T.C. Bailey, et al. ”Recent Advances in Step and
Flash Imprint Lithography”
[22] T. Bailey, et al. “Step and flash imprint
lithography:Defect analysis” J. Vac. Sci. Technol. B
19(6), Nov/Dec 2001