簡易檢索 / 詳目顯示

研究生: 林鉦祐
Lin, Cheng-Yu
論文名稱: 水分子在矽(100)表面之吸附反應
Adsorption of Water Molecules on the Silicon(100)-2×1 Surface
指導教授: 林登松
Lin, Deng-Sung
口試委員: 陸大安
Luh, Dah-An
寇崇善
Kou, Chwung-Shan
林登松
Lin, Deng-Sung
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 61
中文關鍵詞: 水分子吸附二維環境活性鍵掃描穿隧顯微鏡
外文關鍵詞: dangling bond, 2D surrounding
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們提供了一個新的方法研究三原子分子在矽表面之吸附行為。我們在吸附微量水分子之矽表面上,曝上氯分子飽和表面之活性鍵,並使用掃描式穿隧顯微鏡觀察吸附在水分子旁之氯原子形貌。實驗結果顯示使用此方法能夠讓我們輕易地分辨水分子裂解式吸附在表面之H基與OH基,並且成功地發現並統計水分子在表面的各種吸附形態。另外我們也探討水分子與表面孤立活性鍵之間的吸附行為,並且第一次看見水分子與單一活性鍵之吸附反應。此外二維環境變因影響活性鍵與吸附物之反應也在本篇論文中被提出來討論。藉由觀察四周吸附H與部分吸附OH基之孤立活性鍵與水分子之反應,我們發現環境變因確實會影響表面之吸附行為。


    Three atomic molecules adsorption on the Si(100) surface was studied. In this thesis, we investigated the reaction between water molecules and isolated single and pair dangling bonds. Adsorption of single dangling bonds with water molecules was first observed. The influence of two dimensional surrounding on the reaction was also discussed by comparing the reaction behavior of the dangling bonds surrounded by the hydrogen terminated and the partial hydroxyl terminated surface. We also offer a new approach to investigate the adsorption of water by introducing chlorine to the partial water terminated surface. By this method, we could easily identify the hydrogen and hydroxyl on the surface, which were dissociated form the water molecule. New types of adsorption of water on the Si(100) were found and showed and cast in this thesis.

    第一章 簡介 1.1 研究動機 1.2 Si(100)晶面 1.3 相關文獻 1.3.1 已往認為Si(100)表面之缺陷為水分子之裂解式吸附 1.3.2 水分子在Si(100)- 2×1 引發之氧化反應 1.3.3 水分子在Ge(100)上吸附與裂解行為之研究 第二章 實驗儀器與原理 2.1穿隧式掃描顯微鏡 2.1.1 基本原理 2.1.2 掃描穿隧顯微鏡之構造 2.1.3 掃描模式 2.1.4 探針之製作 2.2 超高真空系統 2.2.1 真空幫浦介紹 2.2.2 真空計 2.3 實驗儀器架設 2.3.1 氯氣產生器 2.3.2 OS-Cracker 2.3.3 水之淨化 2.4 樣品準備 第三章 實驗結果與分析 3.1 水分子在Si(100)之吸附與表面孤立活性鍵之反應 3.2 水分子與孤立單一活性鍵與成對活性鍵之吸附反應 3.3低曝量之水分子在Si(100)之吸附情形 第四章 結論 參考資料

    [1] JA Kubby and JJ Boland, Surf. Sci. Rep. 26, 61 (1996)
    [2] S.-Y. Yu, H. Kim, and J. Y. Koo, Phys. Rev. Lett. 100, 036107 (2008)
    [3] Dimitri B. Skliar and Brian G. Willis, J. Phys. Chem. C 112, 9434–9442 (2008)
    [4] M.K. Weldon, B.B. Stefanov, K. Raghavachari, and Y. J. Chabal, Phys. Rev. Lett. 79, 2851 (1997)
    [5] K. Seino, W.G. Schmidt, Surf. Sci. 571,157–160 (2004)
    [6] Soon Jung Jung,Jun Young Lee,Suklyun Hong, and Sehun Kim, J. Phys. Chem. B 109 (51), 24445–24449 (2005)
    [7] Hiroyuki S. Kato, Kazuto Akagi, Shinji Tsuneyuki, and Maki Kawai, J. Phys. Chem. C 112, 12879–12886 (2008)
    [8] N. D. Spencer, P. J. Goddard, P. W. Davies, M. Kitson, and R. M. Lambert, J. Vac. Sci. Technol. A 1, 1554 -1555 (1983).
    [9] K. Hata, T. Kimura, S. Ozawa, and H. Shigekawa,J. Vac. Sci. Technol. A, 18, 1933 (2000)
    [10] Robert Konecny and D. J. Doren, J. Chem. Phys. 106, 6 (1997)
    [11] J.-J. Gallet et al.,J. Phys. Chem. C 115, 7686–7693,(2011)
    [12] A. Bellec et al., Phys. Rev. B. 78,165302 (2008)
    [13] E. J. Buehler and J.J. Boland, Surf. Sci. 425, L363 (1999)
    [14] S.S. Ferng, S.T. Wu, D.S. Lin, and Tai C. Chiang, J. Chem. Phys. 130, 164706 (2009)
    [15] Ming-Feng Hsieh and D.S. Lin, Phys. Rev. B 80, 045304 (2009)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE