簡易檢索 / 詳目顯示

研究生: 程家甫
論文名稱: 添加矽於含γ′相鈷基超合金之設計
Designing Si bearing Co-base superalloys containing γ′ phases
指導教授: 張士欽
口試委員: 葉安洲
張雲開
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 96
中文關鍵詞: 鈷基超合金γ′強化相矽添加高溫氧化元素分布傾向
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的合金系統為一含γ′強化相的鈷基超合金(Co-Al-W-Ni)系統,此合金目前面臨的主要問題之一是較差的抗氧化性,其原因為,為了穩定γ′強化相,合金中的鉻(Cr)含量需保持在某一定低值的含量,使得含γ′強化相的鈷基超合無法因鉻來達到提升合金的抗氧化性。因此,為了同時穩定γ′強化相與提升合金的抗氧化性,本研究藉由添加矽(Si)來達成此目的,並且探討不同含量的矽對此合金性質的影響,包含真空融煉鑄造凝固後的元素分布、基底相(γ)與γ′強化相的微結構、γ與γ′相間的元素分布傾向、室溫與高溫硬度、高溫熱腐蝕和高溫氧化。實驗結果顯示,矽的添加可以降低合金在高溫的氧化增重、提升合金的抗熱腐蝕性和增加γ′相的相體積百分率,進而增強合金在高溫的硬度。根據實驗結果,添加矽對於提升此鈷基超合金的高溫性質,具有顯著的成效。


    In this study, we have investigated the possibility of using advanced Co-base superalloys with γ/γ′ microstructures to replace Ni-base superalloys. However, in order to maintain the thermal stability of γ′ phase in the Co-base superalloys, the content of Cr has to be reduced to a low level, but the reduction of Cr will result in a decrease in oxidation resistance. Therefore, we propose to use Si addition in the Co-base superalloys based on Co-Al-W-Ni system to maintain oxidation resistance. The solidification profiles, γ/γ′ microstructure, solid-solid partitioning, room/high temperature hardness, hot corrosion and oxidation behavior of different Si bearing systems have been examined. Our results show that, by the addition of Si: (1) The oxidation weight gains of the alloys are lowed; (2) The hot corrosion resistances of the alloys are improved; and (3) The fraction of γ′ phase increases, leading to an improvement in the degree of hardness in high temperature. These findings indicate that the addition of Si offers a potential to improve the properties of Co-base superalloys in high temperature.

    摘要 I Abstract II 致謝 III Contents IV List of Figures VII List of Tables XII 1. Introduction 1 1-1 Background 1 1-2 Motivations and Goals 5 2. Literature Review 10 2-1 Recent Development on High Temperature Materials 10 2-2 Alloy Effect 14 2-2-1 Traditional high Cr content Co-base alloys 14 2-2-2 Recent γ′ bearing Co-base alloys 16 (1) γ′ solvus temperature 16 (2) Secondary phases 17 (3) Partitioning behaviors of alloying elements 18 (4) Creep resistance and strength 21 (5) Lattice misfit 22 (6) Oxidation 24 (7) Effect of Si addition 27 2-3 Processing 28 2-3-1 Heat treatment 28 2-3-2 Solidification 30 3. Experimental 31 3-1 Alloy Design 31 3-2 Materials Preparation 35 3-3 Experimental Procedure 35 3-4 Differential Thermal Analyzer (DTA) 37 3-5 Differential Scanning Calorimetry (DSC) 37 3-6 X-ray Diffractometer (XRD) 37 3-7 Optical Metallography (OM) 38 3-8 Scanning Electron Microscopy (SEM) 38 3-9 Electron Probe Microanalyzer (EPMA) 38 3-10 Determining Constrained Lattice Misfit in Room Temperature 39 3-11 Determining Elemental Partitioning Coefficient 39 3-12 Oxidation Test 39 3-13 Room Temperature Hardness Test 40 3-14 High Temperature Hardness Test 40 3-15 Hot Corrosion Test 41 4. Results and Discussion 42 4-1 As-cast 42 4-1-1 Microstructure 42 4-1-2 Solid-liquid partitioning 48 4-2 The Thermal Properties 50 4-3 Solution Heat Treatment and Ageing Heat Treatments 54 4-3-1 Microstructure 54 4-3-2 Solid-solid partitioning 62 4-3-3 Constrained lattice misfit in room temperature. 65 4-4 High Temperature Oxidation 67 4-4-1 900℃ 67 4-4-2 1000℃ 72 4-4-3 1150℃ 78 4-5 Hardness Tests 82 4-6 Hot Corrosion Tests 85 Conclusions 88 Future Work 90 References 91

    1. J. Bedder, R. Baylis, Into the melting pot: the superalloy market and its impact on minor metals, in Minor Metals Conference, 2013, London.
    2. Clearwater Industrials Team, Aerospace global report, 2011.
    3. R. W. Cahn, P. A. Siemers, J. E. Geiger, P. Bardhan, "The order-disorder transformation in Ni3Al and Ni3Al-Fe alloys - I. Determination of the transition temperatures and their relation to ductility", Acta Metallurgica, Vol. 35, (11), 1987, pp. 2737-2751.
    4. F. J. Bremer, M. Beyss, H. Wenzl, "The order-disorder transition of the intermetallic phase Ni3Al", Physica Status Solidi a, Vol. 110, (1), 1988, pp. 77-82.
    5. K. Y. Cheng, C. Y. Jo, D. H. Kim, T. Jin, Z. Q. Hu, "Influence of local chemical segregation on the γ′ directional coarsening behavior in single crystal superalloy CMSX-4", Materials Characterization, Vol. 60, (3), 2009, pp. 210-218.
    6. N. A. Cumpsty, Jet Propulsion: A Simple Guide to the Aerodynamic and Thermodynamic Design and Performance of Jet Engines, Cambridge University Press, 1997.
    7. J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida, "Cobalt-base high-temperature alloys", Science, Vol. 312, (5770), 2006, pp. 90-91.
    8. A. Mottura, A. Janotti, T. M. Pollock, "Alloying effects in the gamma ' phase of Co-based superalloys", Superalloys 2012, 2012, pp. 685-693.
    9. M. S. Titus, A. Suzuki, T. M. Pollock, "High temperature creep of new L1(2)-containing cobalt-base superalloys", Superalloys 2012, 2012, pp. 823-832.
    10. M. S. Titus, A. Suzuki, T. M. Pollock, "Creep and directional coarsening in single crystals of new gamma-gamma ' cobalt-base alloys", Scripta Materialia, Vol. 66, (8), 2012, pp. 574-577.
    11. H. Y. Yan, Vassili A. Vorontsov, J. Coakley, Nicholas G. Jones, Howard J. Stone, D. Dye, "Quaternary alloying effects and the prospects for a new generation of Co-base superalloys", Superalloys 2012, 2012, pp. 705-714.
    12. A. Bauer, S. Neumeier, F. Pyczak, M. Goken, "Creep strength and microstructure of polycrystalline gamma '-strengthened cobalt-base superalloys", Superalloys 2012, 2012, pp. 695-703.
    13. K. Shinagawa, T. Omori, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida, "Phase equilibria and microstructure on gamma ' phase in Co-Ni-Al-W system", Materials Transactions, Vol. 49, (6), 2008, pp. 1474-1479.
    14. H. A. Kuhn, H. Biermann, T. Ungár, H. Mughrabi, "An X-ray study of creep-deformation induced changes of the lattice mismatch in the γ′-hardened monocrystalline nickel-base superalloy SRR 99", Acta Metallurgica et Materialia, Vol. 39, (11), 1991, pp. 2783-2794.
    15. Frank R. N. Nabarro, "Rafting in superalloys", Metallurgical and Materials Transactions A, Vol. 27, 1996, pp. 513-530.
    16. H. Mughrabi, U. Tetzlaff, "Microstructure and high-temperature strength of monocrystalline nickel-base superalloys", Advanced Engineering Materials, Vol. 2, (6), 2000, pp. 319-326.
    17. R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press New York, 2008.
    18. A. Bauer, S. Neumeier, F. Pyczak, R. F. Singer, M. Goken, "Creep properties of different gamma '-strengthened Co-base superalloys", Materials Science and Engineering A, Vol. 550, 2012, pp. 333-341.
    19. G. R. Wallwork, A. Z. Hed, "Some limiting factors in the use of alloys at high temperatures", Oxidation of Metals, Vol. 3, (2), 1971, pp. 171-184.
    20. H. Hindam, D. P. Whittle, "Microstructure, adhesion and growth kinetics of protective scales on metals and alloys", Oxidation of Metals, Vol. 18, (5-6), 1982, pp. 245-284.
    21. Sudhangshu Bose, High Temperature Coatings, Butterworth-Heinemann, 2007.
    22. D. Coutsouradis, A. Davin, M. Lamberigts, "Cobalt-based superalloys for applications in gas turbines", Materials Science and Engineering, Vol. 88, 1987, pp. 11-19.
    23. P. S. Liu, K. M. Liang, "High-temperature oxidation behavior of the Co-base superalloy DZ40M in air", Oxidation of Metals, Vol. 53, (3-4), 2000, pp. 351-360.
    24. K. Kawagishi, A. C. Yeh, T. Yokokawa, T. Kobayashi, Y. Koizumi, H. Harada, "Development of an oxidation-resistant high-strength sixth generation single-crystal superalloy TMS-238", Superalloys 2012, 2012, pp. 189-195.
    25. C. K. Gupta, A. K. Suri, Properties and Applications of Niobium, in Extractive Metallurgy of Niobium, CRC Press, 1993, pp. 12-14.
    26. B. P. Bewlay, M. R. Jackson, J. C. Zhao, P. R. Subramanian, M. G. Mendiratta, J. J. Lewandowski, "Ultrahigh-temperature Nb-silicide-based composites", MRS Bulletin, Vol. 28, (9), 2003, pp. 646-653.
    27. Joachim H. Schneibel, Beyond Nickel-base Superalloys, in Processing and Fabrication of Advanced Materials XIII, M. Gupta, C.Y.H. Lim, T.S. Srivatsan, R.A. Varin, Editors, Stallion Press, 2005, pp. 563-574.
    28. S. S. Hecker, D. L. Rohr, D. F. Stein, "Brittle fracture in iridium", Metallurgical Transactions A, Vol. 9A, 1978, pp. 481-488.
    29. Adrian M. Beltran, Cobalt-base Alloys, in Superalloys II, C.T. Sims, N.S. Stoloff, W.C. Hagel, Editors, Wiley-Interscience, 1987.
    30. F. Xue, M. Wang, Q. Feng, "Alloying effects on heat-treated microstructure in Co-Al-W-base superalloys at 1300 degrees C and 900 degrees C", Superalloys 2012, 2012, pp. 813-821.
    31. H. Y. Yan, V. A. Vorontsov, D. Dye, "Alloying effects in polycrystalline γ′ strengthened Co–Al–W base alloys", Intermetallics, Vol. 48, 2014, pp. 44-53.
    32. A. Bauer, S. Neumeier, F. Pyczak, M. Goken, "Microstructure and creep strength of different gamma/gamma '-strengthened Co-base superalloy variants", Scripta Materialia, Vol. 63, (12), 2010, pp. 1197-1200.
    33. F. Xue, H. J. Zhou, X. F. Ding, M. L. Wang, Q. Feng, "Improved high temperature γ′ stability of Co–Al–W-base alloys containing Ti and Ta", Materials Letters, Vol. 112, 2013, pp. 215-218.
    34. S. Kobayashi, Y. Tsukamoto, T. Takasugi, "Phase equilibria in the Co-rich Co-Al-W-Ti quaternary system", Intermetallics, Vol. 19, (12), 2011, pp. 1908-1912.
    35. T. M. Pollock, J. Dibbern, M. Tsunekane, J. Zhu, A. Suzuki, "New Co-based gamma-gamma' high-temperature alloys", JOM, Vol. 62, (1), 2010, pp. 58-63.
    36. A. C. Yeh, C.M.F. Rae, S. Tin, "High temperature creep of Ru-bearing Ni-base single crystal superalloys", Superalloys 2004, 2004, pp. 677-685.
    37. C. C. Jia, K. Ishida, T. Nishizawa, "Partition of alloying elements between γ (A1), γ' (L12), and β (B2) phases in Ni-Al base systems", Metallurgical and Materials Transactions A, Vol. 25, (3), 1994, pp. 473-485.
    38. R. C. Reed, A. C. Yeh, S. Tin, S. S. Babu, M. K. Miller, "Identification of the partitioning characteristics of ruthenium in single crystal superalloys using atom probe tomography", Scripta Materialia, Vol. 51, (4), 2004, pp. 327-331.
    39. P. J. Bocchini, E. A. Lass, K. W. Moon, M. E. Williams, C. E. Campbell, U. R. Kattner, D. C. Dunand, D. N. Seidman, "Atom-probe tomographic study of gamma/gamma ' interfaces and compositions in an aged Co-Al-W superalloy", Scripta Materialia, Vol. 68, (8), 2013, pp. 563-566.
    40. S. Meher, H. Y. Yan, S. Nag, D. Dye, R. Banerjee, "Solute partitioning and site preference in gamma/gamma ' cobalt-base alloys", Scripta Materialia, Vol. 67, (10), 2012, pp. 850-853.
    41. S. Meher, R. Banerjee, "Partitioning and site occupancy of Ta and Mo in Co-base γ/γ′ alloys studied by atom probe tomography", Intermetallics, Vol. 49, 2014, pp. 138-142.
    42. T. Omori, K. Oikawa, J. Sato, I. Ohnuma, Ursula R. Kattner, R. Kainuma, K. Ishida, "Partition behavior of alloying elements and phase transformation temperatures in Co–Al–W-base quaternary systems", Intermetallics, Vol. 32, 2013, pp. 274-283.
    43. C. Y. Cui, D. H. Ping, Y. F. Gu, H. Harada, "A new Co-base superalloy strengthened by gamma' phase", Materials Transactions, Vol. 47, (8), 2006, pp. 2099-2102.
    44. Y. Amouyal, Z. Mao, D. N. Seidman, "Effects of tantalum on the partitioning of tungsten between the γ- and γ′-phases in nickel-based superalloys: Linking experimental and computational approaches", Acta Materialia, Vol. 58, (18), 2010, pp. 5898-5911.
    45. A. Suzuki, G. C. DeNolf, T. M. Pollock, "Flow stress anomalies in γ/γ′ two-phase Co–Al–W-base alloys", Scripta Materialia, Vol. 56, (5), 2007, pp. 385-388.
    46. A. Suzuki, T. M. Pollock, "High-temperature strength and deformation of gamma/gamma ' two-phase Co-Al-W-base alloys", Acta Materialia, Vol. 56, (6), 2008, pp. 1288-1297.
    47. K. Shinagawa, T. Omori, K. Oikawa, R. Kainuma, K. Ishida, "Ductility enhancement by boron addition in Co–Al–W high-temperature alloys", Scripta Materialia, Vol. 61, (6), 2009, pp. 612-615.
    48. P. Caron, "High gamma ' solvus new generation nickel-based superalloys for single crystal turbine blade applications", Superalloys 2000, 2000, pp. 737-746.
    49. L. Klein, A. Bauer, S. Neumeier, M. Goken, S. Virtanen, "High temperature oxidation of gamma/gamma prime-strengthened Co-base superalloys", Corrosion Science, Vol. 53, (5), 2011, pp. 2027-2034.
    50. L. Klein, Y. Shen, M. S. Killian, S. Virtanen, "Effect of B and Cr on the high temperature oxidation behaviour of novel gamma/gamma '-strengthened Co-base superalloys", Corrosion Science, Vol. 53, (9), 2011, pp. 2713-2720.
    51. L. Klein, M. S. Killian, S. Virtanen, "The effect of nickel and silicon addition on some oxidation properties of novel Co-based, high temperature alloys", Corrosion Science, Vol. 69, 2013, pp. 43-49.
    52. L. Klein, B. von Bartenwerffer, M. S. Killian, P. Schmuki, S. Virtanen, "The effect of grain boundaries on high temperature oxidation of new gamma '-strengthened Co-Al-W-B superalloys", Corrosion Science, Vol. 79, 2014, pp. 29-33.
    53. H. Y. Yan, V. A. Vorontsov, D. Dye, "Effect of alloying on the oxidation behaviour of Co–Al–W superalloys", Corrosion Science, Vol. 83, (0), 2014, pp. 382-395.
    54. Robert V. Miner, "Effects of silicon on the oxidation, hot-corrosion, and mechanical behavior of two cast nickel-base superalloys", Metallurgical Transactions A, Vol. 8A, 1977, pp. 1949-1954.
    55. A. Sato, Y. L. Chiu, R. C. Reed, "Oxidation of nickel-based single-crystal superalloys for industrial gas turbine applications", Acta Materialia, Vol. 59, (1), 2011, pp. 225-240.
    56. A. Sato, H. Harada, Y. Koizumi, T. Kobayashi, K. Kawagishi, H. Imai, "Oxidation resistances of silicon-containing 5th generation Ni-base single crystal superalloys", Journal of the Japan Institute of Metals, Vol. 70, 2006, pp. 180-183.
    57. A. C. Yeh, K. Kawagishi, H. Harada, T. Yokokawa, Y. Koizumi, T. Kobayashi, D. H. Ping, J. Fujioka, T. Suzuki, "Development of Si-bearing 4th generation Ni-base single crystal superalloys", Superalloys 2008, 2008, pp. 619-628.
    58. H. T. Wang, G. L. Zhang, H. S. Yu, S. Q. Wang, G. H. Min, "Effects of chromium, aluminium and silicon on oxidation resistance of Fe-base superalloy", Journal of Materials Engineering, (12), 2008, pp. 73-77.
    59. H. T. Wang, H. S. Yu, Z. C. Wang, J. Zhang, H. M. Chen, G. H. Min, "Effects of scale composition on oxidation kinetics of Fe-based superalloy", Journal of Wuhan University of Technology-Materials Science Edition, Vol. 25, (1), 2010, pp. 99-103.
    60. B. Li, B. Gleeson, "Effects of silicon on the oxidation behavior of Ni-base chromia-forming alloys", Oxidation of Metals, Vol. 65, (1-2), 2006, pp. 101-122.
    61. D. E. Jones, J. Stringer, "The effect of small amounts of silicon on the oxidation of high-purity Co-25 wt. % Cr at elevated temperatures", Oxidation of Metals, Vol. 9, (5), 1975, pp. 409-413.
    62. S. Meher, S. Nag, J. Tiley, A. Goel, R. Banerjee, "Coarsening kinetics of gamma ' precipitates in cobalt-base alloys", Acta Materialia, Vol. 61, (11), 2013, pp. 4266-4276.
    63. M. Tsunekane, A. Suzuki, T. M. Pollock, "Single-crystal solidification of new Co-Al-W-base alloys", Intermetallics, Vol. 19, (5), 2011, pp. 636-643.
    64. X. F. Ding, T. Mi, F. Xue, H. J. Zhou, M. L. Wang, "Microstructure formation in gamma-gamma ' Co-Al-W-Ti alloys during directional solidification", Journal of Alloys and Compounds, Vol. 599, 2014, pp. 159-163.
    65. T. Murakumo, T. Kobayashi, Y. Koizumi, H. Harada, "Creep behaviour of Ni-base single-crystal superalloys with various γ′ volume fraction", Acta Materialia, Vol. 52, (12), 2004, pp. 3737-3744.
    66. R. Burgel, P. D. Portella, J. Preuhs, "Recrystallization in single crystals of nickel base superalloys", Superalloys 2000, 2000, pp. 229-238.
    67. A. C. Yeh, K. C. Yang, J. W. Yeh, C. M. Kuo, "Developing an advanced Si-bearing DS Ni-base superalloy", Journal of Alloys and Compounds, Vol. 585, 2014, pp. 614-621.
    68. A. Porter, B. Ralph, "The recrystallization of nickel-base superalloys", Journal of Materials Science, Vol. 16, 1981, pp. 707-713.
    69. J. D. Nystrom, T. M. Pollock, W. H. Murphy, A. Garg, "Discontinuous cellular precipitation in a high-refractory nickel-base superalloy", Metallurgical and Materials Transactions A, Vol. 28, (12), 1997, pp. 2443-2452.
    70. David A. Porter, Kenneth E. Easterling, Mohamed Y. Sherif, Phase Transformations in Metals and Alloys, CRC Press, 2009.
    71. S. Miura, K. Ohkubo, T. Mohri, "Mechanical properties of Co-based L12 intermetallic compound Co3(Al,W)", Materials Transactions, Vol. 48, (9), 2009, pp. 2403-2408.
    72. Charles Kittel, Introduction to Solid State Physics, John Wiley & Sons, Inc, 2005.
    73. Neil Birks, Gerald H. Meier, Frederick S. Pettit, Introduction to the High Temperature Oxidation of Metals, Cambridge University Press, 2006.
    74. C. C. Juan, C. Y. Hsu, C. W. Tsai, W. R. Wang, T. S. Sheu, J. W. Yeh, S. K. Chen, "On microstructure and mechanical performance of AlCoCrFeMo0.5Nix high-entropy alloys", Intermetallics, Vol. 32, 2013, pp. 401–407.
    75. Hitachi Metals MMC Superalloy Ltd.
    Product Information, Heat Resistance Alloys, UMCo50. Available from: http://www.hitachi-metals-sa.co.jp/e/products/heatresist_umco50.html.
    76. V. Nagarajan, J. Stringer, D.P. Whittle, "The hot corrosion of cobalt-base alloys in a modified Dean's rig-II. Co-Cr-Al alloys", Corrosion Science, Vol. 22, (5), 1982, pp. 429–439.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE