簡易檢索 / 詳目顯示

研究生: 班德勝
Ban, De-Sheng
論文名稱: 使用環型共振雷射用於以相敏光時域反射儀為架構之光纖入侵感測系統
Distributed Fiber-Optic Phase-Sensitive OTDR-Based Intrusion Sensor System Using Ring Cavity Laser
指導教授: 王立康
Wang, Li-Karn
口試委員: 劉文豐
Liu, Wen-Fung
馮開明
Feng, Kai-Ming
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 35
中文關鍵詞: 環型共振雷射相敏光時域反射儀
外文關鍵詞: Ring Cavity Laser, Phase-Sensitive OTDR
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用簡單的光纖元件,自製一窄線寬脈衝雷射,並應用於相敏光時域反射儀的系統中,透過本實驗室自製環形共振腔雷射取代一般論文常使用的半導體雷射,大大的降低整體系統成本,並透過AOM調製產生的脈衝打進四點四公里的長光纖。我們將此脈衝打入感測光纖內,來產生背向的雷利散射。雷利散射也會因為光纖的震動或是拍擊所產生的相位變化而有能量強度的高低變化。利用此散射的強度變化,我們可以來推測出光纖中的斷裂、扭曲抑或是經由入侵引起之相位變化造成的干涉,即可反推出入侵訊號在光纖中的位置,以此來達到防區的效果。


    In this thesis, an intrusion detection system based on phase-sensitive optical time domain reflectrometry is studied, with a lab-made ring resonant cavity laser used as a light sourse.
    This laser exhibits a narrow linewidth of about 1KHz(FWHM), and its light is split into two parts,through a 10:90 fiber coupler, with the smaller part being a local oscillator light and the larger part the signal light injected into an AOM modulator to form a pulse train. The pulse train is launched into a test fiber of 4.4km in length.The Rayleigh backscattered light and the local oscillator light are then fed into a 50:50 fiber coupler and then balanced detectors.By a subtraction and mixer operation followed by low pass filtering, a detection signal train is generated. By using a moving average algorithm, we observe simultaneous intrusion points clearly enough with 1000 data windows processed in the algorithm.

    摘要.........i ABSTRACT......ii 致謝........iii 目錄........iv 圖目錄.......v 第一章.......1 第二章.......11 第三章.......17 第四章.......31 參考文獻......33

    [1]T. Okoshi, "Recent advances in coherent optical fiber communication systems," Journal of Lightwave Technology, vol. 5, no. 1, pp. 44-52, 1987.
    [2]D. Gloge, "Optical fiber theory: Opportunities for advancement abound," Radio Science, vol. 12, no. 4, pp. 479-490, 1977.
    [3]C. Saravanos and R. S. Lowe, "Characterization techniques of single-mode fibers," Symposium on Antenna Technology and Applied Electromagnetics, pp. 1-6, 1988.
    [4] S. W. Henderson, P. J. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, "Coherent laser radar at 2 μm using solid-state lasers," IEEE transactions on geoscience and remote sensing, vol. 31, no. 1, pp. 4-15, 1993.
    [5] H. Patrick, G. Williams, A. Kersey, J. Pedrazzani, and A. Vengsarkar, "Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination," IEEE Photonics Technology Letters, vol. 8, no. 9, pp. 1223-1225, 1996.
    [6] S. J. Park, C. L. Ta, H. G. Baek, Y. H. Kim, J. B. Eom, Y. T. Lee, and B. H. Lee, "Optical fiber sensor for refractive index measurement based on localized surface plasmon resonance," in Conference on Lasers and Electro-Optics/Pacific Rim, 2013: Optical Society of America, p. WPF_20.
    [7] Z. Mahmud, S. H. Herman, U. M. Noor, and S. Saharudin, "Performance characterization of optical fiber oxygen sensor in gas and aqueos phase," 2013 IEEE Student Conference on Research and Developement, pp. 569-571, 2013.
    [8] A. A. Chtcherbakov and P. L. Swart, "Polarization effects in the Sagnac-Michelson distributed disturbance location sensor," Journal of Lightwave Technology, vol. 16, no. 8, pp. 1404-1412, 1998.
    [9] X. Wang, Z. Yan, F. Wang, J. Hua, C. Mou, Z. Sun, X. Zhang, and L. Zhang, "An OTDR and gratings assisted multifunctional fiber sensing system," IEEE Sensors Journal, vol. 15, no. 8, pp. 4660-4666, 2015.
    [10] S. S. Mahmoud, Y. Visagathilagar, and J. Katsifolis, "Real-time distributed fiber optic sensor for security systems: Performance, event classification and nuisance mitigation," Photonic sensors, vol. 2, no. 3, pp. 225-236, 2012.
    [11] H.-N. Li, D.-S. Li, and G.-B. Song, "Recent applications of fiber optic sensors to health monitoring in civil engineering," Engineering structures, vol. 26, no. 11, pp. 1647-1657, 2004.
    [12] J. C. Juarez, E. W. Maier, C. Kyoo Nam, and H. F. Taylor, "Distributed fiber-optic intrusion sensor system," Journal of Lightwave Technology, vol. 23, no. 6, pp. 2081-2087, 2005.
    [13] C. Franciscangelis, W. Margulis, L. Kjellberg, I. Soderquist, and F. Fruett, "Real-time distributed fiber microphone based on phase-OTDR," Opt Express, vol. 24, no. 26, pp. 29597-29602, Dec 26 2016.
    [14] L. Yuelan, Z. Tao, C. Liang, and B. Xiaoyi, "Distributed vibration sensor based on coherent detection of phase-OTDR," Journal of Lightwave Technology, vol. 28, no. 22, pp. 3243-3249, 2010.
    [15] Y. Shan, W. Ji, X. Dong, L. Cao, M. Zabihi, Q. Wang, Y. Zhang, and X. Zhang, "An enhanced distributed acoustic sensor based on UWFBG and self-heterodyne detection," Journal of Lightwave Technology, vol. 37, no. 11, pp. 2700-2705, 2019.
    [16] Z. Qin, T. Zhu, L. Chen, and X. Bao, "High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR," IEEE Photonics Technology Letters, vol. 23, no. 15, pp. 1091-1093, 2011.
    [17] S. Liang, X. Sheng, S. Lou, Y. Feng, and K. Zhang, "Combination of phase-sensitive OTDR and michelson interferometer for nuisance alarm rate reducing and event identification," IEEE Photonics Journal, vol. 8, no. 2, pp. 1-12, 2016.
    [18] P. R. Hoffman and M. G. Kuzyk, "Position determination of an acoustic burst along a Sagnac interferometer," Journal of Lightwave Technology, vol. 22, no. 2, pp. 494-498, 2004.
    [19] H. Wang, Q. Sun, X. Li, J. Wo, P. P. Shum, and D. Liu, "Improved location algorithm for multiple intrusions in distributed Sagnac fiber sensing system," Optics express, vol. 22, no. 7, pp. 7587-7597, 2014.
    [20] X. Hong, J. Wu, C. Zuo, F. Liu, H. Guo, and K. Xu, "Dual Michelson interferometers for distributed vibration detection," Applied optics, vol. 50, no. 22, pp. 4333-4338, 2011.
    [21] Y. Zhang, L. Xia, C. Cao, Z. Sun, Y. Li, and X. Zhang, "A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response," Optics Communications, vol. 382, pp. 176-181, 2017.
    [22] C. Wang, Y. Shang, W.-A. Zhao, X.-H. Liu, C. Wang, and G.-D. Peng, "Investigation and comparison of φ-OTDR and OTDR-interferometry via phase demodulation," IEEE Sensors Journal, vol. 18, no. 4, pp. 1501-1505, 2018.
    [23] X. Wang, Z. Yan, F. Wang, Z. Sun, C. Mou, X. Zhang, and L. Zhang, "SNR enhanced distributed vibration fiber sensing system employing polarization OTDR and ultraweak FBGs," IEEE Photonics Journal, vol. 7, no. 1, pp. 1-11, 2015.
    [24] H. Chen, Y. Xu, S. Qian, H. Yuan, and L. Su, "Transient nanostrain detection in phi-OTDR using statistics-based signal processing," Journal of Lightwave Technology, vol. 38, no. 17, pp. 4883-4892, 2020.
    [25] Z. Fan, Z. Yixin, X. Lan, W. Xuelin, and Z. Xuping, "Improved Φ-OTDR sensing system for high-precision dynamic strain measurement based on ultra-weak fiber bragg grating array," Journal of Lightwave Technology, vol. 33, no. 23, pp. 4775-4780, 2015.
    [26] Q. Yuan, F. Wang, T. Liu, Y. Zhang, and X. Zhang, "Using an auxiliary Mach–Zehnder interferometer to compensate for the influence of laser-frequency-drift in Φ-OTDR," IEEE Photonics Journal, vol. 11, no. 1, pp. 1-9, 2019.
    [27] 肖華菊,王翔,馬雲,張潔, "基於 DSHI 的窄線寬光纖激光器線寬測量," 光電工程, vol. 37, no. 8, pp. 57-61, 2010.
    [28] S. Huang, T. Zhu, Z. Cao, M. Liu, M. Deng, J. Liu, and X. Li, "Laser linewidth measurement based on amplitude difference comparison of coherent envelope," IEEE Photonics Technology Letters, vol. 28, no. 7, pp. 759-762, 2016.
    [29] A. Signorini, S. Faralli, M. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, "40 km long-range Raman-based distributed temperature sensor with meter-scale spatial resolution," Optical Fiber Communication Conference, p. OWL2, 2010.

    QR CODE