簡易檢索 / 詳目顯示

研究生: 劉宇傑
Liu, Yu-Chieh
論文名稱: 固態染料敏化太陽能電池之研究
A Study on Solid-State Dye‐Sensitized Solar Cells
指導教授: 衛子健
Wei, Tzu-Chien
口試委員: 葉鎮宇
Yeh, Chen-Yu
陳志銘
Chen, Chih-Ming
周鶴修
Chou, Ho-Hsiu
吳冠霖
Wu, Kuan-Lin
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 190
中文關鍵詞: 固態染料敏化太陽能電池苝染料
外文關鍵詞: solid-state dye‐sensitized solar cells, perylene dye
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要著重在固態染料敏化太陽電池的系統建立和應用,並使用新型高吸光苝錯合物作為染料製作高效率電池。固態染料敏化太陽電池(Solid-state Dye-sensitized Solar Cells),簡稱s-DSSC,有別於一般染敏太陽電池採用的液態電解液,而改以固態電洞傳輸材料(Hole Transporting Material, HTM)作為氧化還原對,s-DSSC的優點包含可避免電解液洩漏及封裝問題、單片式設計可減少電池體積占比以及較短製程時間,然而其效率仍舊低於液態DSSC,歸因於HTM製作過程中於TiO2介孔層內存在孔隙滲透率及固含量多寡問題,導致電池在開路偏壓下(照光狀態)測得電子擴散長度縮短至~2μm,因此須將介孔層厚度減至2μm,但卻減少染料吸附量而導致吸光效率不足,目前可行策略之一為使用具有高消光係數有機染料。
    這是我們首次嘗試開發s-DSSC並建構完整製作系統,在第四章中主要針對電池中各項組成材料進行優化處理,隨後基於上述優化技術,在第五章中我們介紹一系列不同推-拉電子能力(D-π-A)的苝錯合物作為染料,並分別搭配碘電解液(I-/I3-)及Spiro-OMeTAD製作液態和固態染敏電池。其中,具有多重推-拉電子(D-A-π-A)的苝染料GJ-BP,除了具有高消光係數(在541nm波長處為35400 M-1 cm-1)及延伸至700nm光譜,使其在液態及固態染敏電池中的平均效率分別達到6.0%及4.6%之外,針對抑制電子-氧化電解質再結合及其他影響效率的因素,透過電化學阻抗分析及電子密度空間分布計算,顯示GJ-BP具有優異的再結合阻抗、電子壽命及電荷收集效率,與常見的釕金屬染料相比更適用於s-DSSC。最後在第六章中,著眼於s-DSSC的實用性,設計出一種嵌入s-DSSC和指叉對稱式二氧化錳電容的光電裝置,透過電路設計整合於同一基材,裝置搭配高吸光Y123染料(530nm為48000 M-1 cm-1) 測得在AM1.5G太陽光下具有0.91V的VOC值和3.80%的轉換效率;而在室內光T5燈(6000lux)下,因其光源輻射範圍與染料吸光光譜具有高匹配性而可提升至10.52 %;在電容部分,以簡易電沉積製作並經優化後的MnO2電容,在充放電測試中測得其平均電容值約為13.2 mF cm-2,與s-DSSC整合後裝置分別在太陽光及T5室內光環境下進行充放電測試並探討其充放電效率。


    In this study, we investigated high photovoltaic performance of perylene derivatives as dyes used in optimized solid-state dye-sensitized solar cells (s-DSSC). s-DSSC was attractive for its ignorable leakage problem by employing the hole-transporting material (HTM) instead of conventional liquid electrolyte. Generally, the light harvest capability of a s-DSSC was lower than its liquid-electrolyte counterpart because the mesoporous TiO2 film of a s-DSSC was thinner than that of a liquid-type DSSC in order to allow satisfactory penetration of HTM. To solve this problem, one of the viable tactic was the use of dyes with high extinction coefficient and broad spectral response, targeting to enable high ligh harvesting capability within a thin film.
    It was our first time to fabricate the s-DSSC and to build its optimization system. Therefore, in chapter 4 we used progressive optimization toward each component in s-DSSC. Based on aforementioned optimized techniques, in chapter 5 we introduced a series of D-π-A designed perylene derivatives as dyes used in I-/I3--based liquid-DSSC and spiro-OMeTAD-based s-DSSC respectively. In particular, the D-A-π-A designed perylene dye called GJ-BP featured better extinction coefficenct (ε of 35400 M-1 cm-1 at wavelength of 541nm) and exceptional spectral broadening to 700nm wavelength, leading to the conversion efficiencies of 6.0% and 4.6% in liquid- and solid-DSSC respectively. In addition, other factors that influenced the efficiency such as recombination occurring at TiO2-electrolyte interface were elucidated by using electrochemical impedance spectroscopy and spatial distributed calculation. The results showed that GJ-BP-sensitized s-DSSC has enhanced charge recombination resistance, electron lifetime, and charge collection efficiency in comparison with Ruthenium dye-sensitized s-DSSC. In chapter 6, it was concerned with s-DSSC in practical application. We attempted to design an on-chip photocapacitor embedding with a s-DSSC and a MnO2-based symmetric interdigitated supercapacitor. By modulating electrical circuit design, the integrating platform with energy generation and storage was successfully established. The preliminary results showed that s-DSSC sensitized with Y123 dye (48000 M-1 cm-1 at 530nm) obtained the open-circuit voltage (VOC) of 0.91V and efficiency of 3.80% under one sun condition and 10.52 % under 6000-lux indoor T5-lamp environment, respectively. The capacitance of MnO2-based supercapacitor was measured about 13.2 mFcm-2 by charge-discharge test. Subsequently the charging efficiency of the integrated device under solar and indoor light condition was further investigated.

    摘要 I ABSTRACT III 誌謝 V 目錄 VI 圖目錄 VIII 表目錄 XIV 第一章 介紹 1 1.1 能源消耗和可再生能源 1 1.2 太陽能電池的分類 2 1.3 染料敏化太陽能電池 8 第二章 文獻回顧 10 2.1 染料敏化太陽電池的工作原理 10 2.2 染料敏化太陽電池的組成及結構 12 2.3 固態染料敏化太陽電池的發展及文獻回顧 25 2.4 研究動機與目的 41 第三章 實驗步驟與分析方法 42 3.1 實驗藥品和材料 42 3.1.1 藥品與材料簡介 42 3.2 染料液配製 47 3.3 實驗儀器 50 3.3.1 實驗儀器與設備 50 3.4 重要儀器簡介與分析原理 52 3.4.1 紫外光/可見光光譜儀 (Ultraviolet-visible spectroscopy) 52 3.4.2 電化學阻抗頻譜分析 (Electrochemical impedance spectroscopy, EIS) 56 3.4.3 循環伏安法 (Cyclic voltammetry, CV) 63 3.4.4 時間解析光激發螢光光譜 (Time-resolved photoluminescence, TRPL) 66 3.4.5 電池光伏特性測量 69 3.4.6 量子效率量測 (Incident photon-to-current efficiency, IPCE) 71 3.4.7 室內光光源下的光電測量系統(J-V measurement under indoor light environment) 74 3.5 染敏電池組裝流程 76 3.5.1 液態染料敏化太陽能電池的製備流程 76 3.5.2 固態染料敏化太陽能電池的製備流程 78 第四章 固態染料敏化太陽電池製作平台的建立 80 4.1 固態與液態電池製程的一般性比較 80 4.2 二氧化鈦介孔層 83 4.2.1 二氧化鈦介孔層厚度 83 4.3 二氧化鈦緻密層 87 4.3.1 二氧化鈦緻密層沉積方法 87 4.3.2 二氧化鈦緻密層沉積次數 93 4.4 電洞傳輸層 99 4.5 染料 104 第五章 固態苝染料敏化太陽能電池 108 5.1 新型苝染料應用於染料敏化太陽能電池的研究 108 5.1.1 苝錯合物染料在液態染料敏化太陽能電池的發展 108 5.1.2 苝錯合物染料在固態染料敏化太陽能電池的發展 109 5.2 實驗結果與討論 114 5.2.1 搭配碘電解液(I–/I3–)應用於液態苝染料敏化太陽電池的研究 114 5.2.2 固態苝染料敏化太陽電池的研究 122 5.3 結論 141 第六章 整合固態染敏電池及二氧化錳超級電容設計的自充電光電電容器 144 6.1 發電儲電整合裝置平台建立與介紹 144 6.2 整合裝置的製作方法 151 6.3 結果與討論 154 6.3.1 透過電容設計優化其電能儲存能力 154 6.3.2 AM1.5G太陽光和室內光T5照射下測量整合裝置的充放電特性 158 6.4 結論 168 第七章 總結與未來展望 169 參考文獻 170

    1. 丹尼爾.尤金, 能源大探索: 石油即將枯竭? 2012: 時報文化出版企業股份有限公司.
    2. 洪志明, 再生能源發電(第二版). 2020: 全華圖書股份有限公司.
    3. 何無忌, 2016年能源產業技術白皮書. 2016: 經濟部能源局.
    4. 沈輝、曾祖勤, 太陽能光電技術. 2008: 五南圖書出版股份有限公司.
    5. 羅運俊、何梓年、王長貴, 太陽能發電技術與應用. 2007: 新文京開發出版股份有限公司.
    6. Archer, D., Global warming: understanding the forecast. 2011: John Wiley & Sons.
    7. 林明獻, 太陽電池技術入門(第五版). 2019: 全華圖書股份有限公司.
    8. Foundation, T.N. The Nobel Prize in Physics 1921. 2014; Available from: https://www.nobelprize.org/nobel_prizes/physics/laureates/1921/.
    9. Arons, A. and M. Peppard, Einstein's Proposal of the Photon Concept—a Translation of the Annalen der Physik Paper of 1905. American Journal of Physics, 1965. 33(5): p. 367-374.
    10. 蔡進譯, 超高效率太陽電池-從愛因斯坦的光電效應談起. 物理雙月刊, 2005. 27(5): p. 701-719.
    11. Fahrenbruch, A. and R. Bube, Fundamentals of solar cells: photovoltaic solar energy conversion. 2012: Elsevier.
    12. Tsu, R., H. Shen, and M. Dutta, Correlation of Raman and photoluminescence spectra of porous silicon. Applied Physics Letters, 1992. 60(1): p. 112-114.
    13. Pankove, J.I., Optical Processes in Semiconductors. 1971: Dover.
    14. 郭浩中, 太陽能光電技術. 2012: 台灣五南圖書出版股份有限公司.
    15. 翁敏航、楊茹媛、管鴻、晁成虎, 太陽能電池: 原理, 元件, 材料, 製程與檢測技術. 2012: 臺灣東華書局股份有限公司.
    16. Laboratory, N.R.E., Best Research-Cell Efficiencies, N.C.f. Photovoltaics, Editor. 2022, National Renewable Energy Laboratory (NREL): National Renewable Energy Laboratory (NREL).
    17. Chapin, D.M., C. Fuller, and G. Pearson, A new silicon p‐n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics, 1954. 25(5): p. 676-677.
    18. Green, M.A., K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop, Solar cell efficiency tables (Version 45). Progress in photovoltaics: research and applications, 2015. 23(1): p. 1-9.
    19. Zulehner, W., Czochralski growth of silicon. Journal of Crystal Growth, 1983. 65(1-3): p. 189-213.
    20. Riemann, H. and A. Luedge, Floating zone crystal growth, in Crystal Growth of Si for Solar Cells. 2009, Springer. p. 41-53.
    21. Kołodziej, A., Staebler-Wronski effect in amorphous silicon and its alloys. Opto-electronics review, 2004. 12(1): p. 21--32.
    22. Naghavi, N., S. Spiering, M. Powalla, B. Cavana, and D. Lincot, High‐efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD). Progress in Photovoltaics: Research and Applications, 2003. 11(7): p. 437-443.
    23. Schock, H.W. and R. Noufi, CIGS‐based solar cells for the next millennium. Progress in Photovoltaics: Research and Applications, 2000. 8(1): p. 151-160.
    24. Probst, V., W. Stetter, W. Riedl, H. Vogt, M. Wendl, H. Calwer, S. Zweigart, K.-D. Ufert, B. Freienstein, and H. Cerva, Rapid CIS-process for high efficiency PV-modules: development towards large area processing. Thin Solid Films, 2001. 387(1): p. 262-267.
    25. Bett, A. and H. Lerchenmüller, 14 The FLATCON System from Concentrix Solar. Concentrator Photovoltaics, 2007. 130: p. 301.
    26. O'regan, B. and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. nature, 1991. 353(6346): p. 737-740.
    27. Grätzel, M., Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003. 4(2): p. 145-153.
    28. 陳信宏, 染料敏化太陽能電池近期發展. 光連: 光電產業與技術情報, 2009(84): p. 22-28.
    29. 曾君儒, 染料敏化太陽電池技轉簽約報導. 2014: 能源報導二月號. p. 28-32.
    30. Shapiro, B., Chemistry of Spectral Sensitization Processes–A Review. Journal of Imaging Science and Technology, 2002. 46(2): p. 89-100.
    31. Vogel, H., XXXII. On the sensibility to light of bromide of silver with respect to the so-called chemically inert colours. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1874. 47(312): p. 273-277.
    32. Matsumura, M., S. Matsudaira, H. Tsubomura, M. Takata, and H. Yanagida, Dye sensitization and surface structures of semiconductor electrodes. Industrial & Engineering Chemistry Product Research and Development, 1980. 19(3): p. 415-421.
    33. Robertson, N., Optimizing Dyes for Dye‐Sensitized Solar Cells. Angewandte Chemie International Edition, 2006. 45(15): p. 2338-2345.
    34. Reynal, A. and E. Palomares, Ruthenium polypyridyl sensitisers in dye solar cells based on mesoporous TiO2. European Journal of Inorganic Chemistry, 2011(29): p. 4509-4526.
    35. Benesperi, I., H. Michaels, and M. Freitag, The researcher's guide to solid-state dye-sensitized solar cells. Journal of Materials Chemistry C, 2018. 6(44): p. 11903-11942.
    36. Choi, W.-J., D.-J. Kwak, C.-S. Park, and Y.-M. Sung, Characterization of transparent conductive ITO, ITiO, and FTO Films for application in photoelectrochemical cells. Journal of nanoscience and nanotechnology, 2012. 12(4): p. 3394-3397.
    37. Mane, R.S., W.J. Lee, H.M. Pathan, and S.-H. Han, Nanocrystalline TiO2/ZnO thin films: fabrication and application to dye-sensitized solar cells. The Journal of Physical Chemistry B, 2005. 109(51): p. 24254-24259.
    38. Daoud, W.A. and M.L. Turner, Effect of interfacial properties and film thickness on device performance of bilayer TiO 2-poly (1, 4-phenylenevinylene) solar cells prepared by spin coating. Reactive and Functional Polymers, 2006. 66(1): p. 13-20.
    39. Lin, C.-M., Y.-C. Chang, J. Yao, C. Wang, C. Luo, and S.S. Yin, Multi-step hydrothermally synthesized TiO 2 nanoforests and its application to dye-sensitized solar cells. Materials Chemistry and Physics, 2012. 135(2): p. 723-727.
    40. Zhu, H., J. Yang, S. Feng, M. Liu, J. Zhang, and G. Li, Growth of TiO 2 nanosheet-array thin films by quick chemical bath deposition for dye-sensitized solar cells. Applied Physics A: Materials Science & Processing, 2011. 105(3): p. 769-774.
    41. Jarernboon, W., S. Pimanpang, S. Maensiri, E. Swatsitang, and V. Amornkitbamrung, Optimization of titanium dioxide film prepared by electrophoretic deposition for dye-sensitized solar cell application. Thin Solid Films, 2009. 517(16): p. 4663-4667.
    42. Chávez-Valdez, A., M. Herrmann, and A. Boccaccini, Alternating current electrophoretic deposition (EPD) of TiO 2 nanoparticles in aqueous suspensions. Journal of colloid and interface science, 2012. 375(1): p. 102-105.
    43. Gemeiner, P. and M. Mikula, Effi ciency of dye sensitized solar cells with various compositions of TiO2 based screen printed photoactive electrodes. Acta Chimica Slovaca, 2013. 6(1): p. 29-34.
    44. Kontos, A.I., A.G. Kontos, D.S. Tsoukleris, M.-C. Bernard, N. Spyrellis, and P. Falaras, Nanostructured TiO 2 films for DSSCS prepared by combining doctor-blade and sol–gel techniques. journal of materials processing technology, 2008. 196(1): p. 243-248.
    45. Hossain, M., S. Biswas, T. Takahashi, Y. Kubota, and A. Fujishima, Investigation of sputter-deposited TiO2 thin film for the fabrication of dye-sensitized solar cells. Thin Solid Films, 2008. 516(20): p. 7149-7154.
    46. Seo, H., M.-K. Son, J.-K. Kim, I. Shin, K. Prabakar, and H.-J. Kim, Method for fabricating the compact layer in dye-sensitized solar cells by titanium sputter deposition and acid-treatments. Solar Energy Materials and Solar Cells, 2011. 95(1): p. 340-343.
    47. Shanmugam, M., M.F. Baroughi, and D. Galipeau, High VOC dye sensitised solar cell using RF-sputtered TiO2 compact layers. Electronics letters, 2009. 45(12): p. 648-649.
    48. Thelakkat, M., C. Schmitz, and H.W. Schmidt, Fully Vapor‐Deposited Thin‐Layer Titanium Dioxide Solar Cells. Advanced Materials, 2002. 14(8): p. 577-581.
    49. Hart, J.N., D. Menzies, Y.-B. Cheng, G.P. Simon, and L. Spiccia, TiO 2 sol–gel blocking layers for dye-sensitized solar cells. Comptes Rendus Chimie, 2006. 9(5): p. 622-626.
    50. Choi, H., C. Nahm, J. Kim, J. Moon, S. Nam, D.-R. Jung, and B. Park, The effect of TiCl 4-treated TiO 2 compact layer on the performance of dye-sensitized solar cell. Current Applied Physics, 2012. 12(3): p. 737-741.
    51. Burke, A., S. Ito, H. Snaith, U. Bach, J. Kwiatkowski, and M. Grätzel, The function of a TiO2 compact layer in dye-sensitized solar cells incorporating “planar” organic dyes. Nano letters, 2008. 8(4): p. 977-981.
    52. Sommeling, P., B. O'regan, R. Haswell, H. Smit, N. Bakker, J. Smits, J. Kroon, and J. Van Roosmalen, Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. The Journal of Physical Chemistry B, 2006. 110(39): p. 19191-19197.
    53. Messing, G.L., S.C. Zhang, and G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis. Journal of the American Ceramic Society, 1993. 76(11): p. 2707-2726.
    54. Perednis, D. and L.J. Gauckler, Thin film deposition using spray pyrolysis. Journal of electroceramics, 2005. 14(2): p. 103-111.
    55. Peng, B., G. Jungmann, C. Jäger, D. Haarer, H.-W. Schmidt, and M. Thelakkat, Systematic investigation of the role of compact TiO 2 layer in solid state dye-sensitized TiO 2 solar cells. Coordination Chemistry Reviews, 2004. 248(13): p. 1479-1489.
    56. Igarashi, S., H. Sakamoto, K. Niume, Y. Tanaka, R. Tamaki, S. Odu, and M. Nagai, Fabrication of fairly efficient solid state dye-sensitized solar cells with a dense blocking layer. Journal of the Ceramic Society of Japan, 2013. 121(1413): p. 437-440.
    57. Heo, J., P. Sudhagar, H. Park, W. Cho, Y.S. Kang, and C. Lee, Room temperature synthesis of highly compact TiO2 coatings by vacuum kinetic spraying to serve as a blocking layer in polymer electrolyte-based dye-sensitized solar cells. Journal of Thermal Spray Technology, 2015. 24(3): p. 328-337.
    58. Karthikeyan, C.S. and M. Thelakkat, Key aspects of individual layers in solid-state dye-sensitized solar cells and novel concepts to improve their performance. Inorganica Chimica Acta, 2008. 361(3): p. 635-655.
    59. Bach, U., D. Lupo, P. Comte, J. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, and M. Grätzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998. 395(6702): p. 583-585.
    60. Shalabi, A.S., A.M. El Mahdy, H.O. Taha, and K.A. Soliman, The effects of macrocycle and anchoring group replacements on the performance of porphyrin based sensitizer: DFT and TD-DFT study. Journal of Physics and Chemistry of Solids, 2015. 76: p. 22-33.
    61. Li, M., L. Kou, L. Diao, Q. Zhang, Z. Li, Q. Wu, W. Lu, D. Pan, and Z. Wei, Theoretical Study of WS-9-Based Organic Sensitizers for Unusual Vis/NIR Absorption and Highly Efficient Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 2015. 119(18): p. 9782-9790.
    62. Nazeeruddin, M.K., A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society, 1993. 115(14): p. 6382-6390.
    63. Kakiage, K., Y. Aoyama, T. Yano, T. Otsuka, T. Kyomen, M. Unno, and M. Hanaya, An achievement of over 12 percent efficiency in an organic dye-sensitized solar cell. Chemical Communications, 2014. 50(48): p. 6379-6381.
    64. Kakiage, K., Y. Aoyama, T. Yano, K. Oya, T. Kyomen, and M. Hanaya, Fabrication of a high-performance dye-sensitized solar cell with 12.8% conversion efficiency using organic silyl-anchor dyes. Chemical Communications, 2015. 51(29): p. 6315-6317.
    65. Yella, A., C.L. Mai, S.M. Zakeeruddin, S.N. Chang, C.H. Hsieh, C.Y. Yeh, and M. Grätzel, Molecular engineering of push–pull porphyrin dyes for highly efficient dye‐sensitized solar cells: The role of benzene spacers. Angewandte Chemie, 2014. 126(11): p. 3017-3021.
    66. Kakiage, K., Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisawa, and M. Hanaya, Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chemical Communications, 2015. 51(88): p. 15894-15897.
    67. 崔孟晉, 染料敏化太陽能電池電解質概述, in 工業材料雜誌. 2008.
    68. Freitag, M., J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S.M. Zakeeruddin, J.-E. Moser, and M. Grätzel, Dye-sensitized solar cells for efficient power generation under ambient lighting. Nature Photonics, 2017.
    69. Moribe, S., N. Kato, K. Higuchi, K. Mizumoto, and T. Toyoda, Control of interfacial charge-transfer interaction of dye and p-CuI in solid-state dye-sensitized solar cells. Applied Physics Express, 2017. 10(4): p. 042301.
    70. Li, Z.-Q., L.-E. Mo, W.-C. Chen, X.-Q. Shi, N. Wang, L.-H. Hu, T. Hayat, A. Alsaedi, and S.-Y. Dai, Solvothermal Synthesis of Hierarchical TiO2 Microstructures with High Crystallinity and Superior Light Scattering for High-Performance Dye-Sensitized Solar Cells. ACS applied materials & interfaces, 2017. 9(37): p. 32026-32033.
    71. Boschloo, G. and A. Hagfeldt, Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells. Accounts of Chemical Research, 2009. 42(11): p. 1819-1826.
    72. Wang, Z.-S., K. Sayama, and H. Sugihara, Efficient eosin Y dye-sensitized solar cell containing Br-/Br3-electrolyte. The Journal of Physical Chemistry B, 2005. 109(47): p. 22449-22455.
    73. Oskam, G., B.V. Bergeron, G.J. Meyer, and P.C. Searson, Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells. The Journal of Physical Chemistry B, 2001. 105(29): p. 6867-6873.
    74. Wang, P., S.M. Zakeeruddin, J.-E. Moser, R. Humphry-Baker, and M. Grätzel, A solvent-free, SeCN-/(SeCN) 3-based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells. Journal of the American Chemical Society, 2004. 126(23): p. 7164-7165.
    75. Burschka, J., A. Dualeh, F. Kessler, E. Baranoff, N.-L. Cevey-Ha, C. Yi, M.K. Nazeeruddin, and M. Grätzel, Tris (2-(1 H-pyrazol-1-yl) pyridine) cobalt (III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. Journal of the American Chemical Society, 2011. 133(45): p. 18042-18045.
    76. Yum, J.-H., E. Baranoff, F. Kessler, T. Moehl, S. Ahmad, T. Bessho, A. Marchioro, E. Ghadiri, J.-E. Moser, and C. Yi, A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nature communications, 2012. 3: p. 631.
    77. Hua, J., S.M. Zakeeruddin, J.-E. Moser, M. Grätzel, and A. Hagfeldt, Dye-sensitized solar cells for efficient power generation under ambient lighting. 2017.
    78. Meng, Q.B., K. Takahashi, X.T. Zhang, I. Sutanto, T.N. Rao, O. Sato, A. Fujishima, H. Watanabe, T. Nakamori, and M. Uragami, Fabrication of an Efficient Solid-State Dye-Sensitized Solar Cell. Langmuir, 2003. 19(9): p. 3572-3574.
    79. Yang, L., U.B. Cappel, E.L. Unger, M. Karlsson, K.M. Karlsson, E. Gabrielsson, L. Sun, G. Boschloo, A. Hagfeldt, and E.M. Johansson, Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012. 14(2): p. 779-789.
    80. Zhang, W., R. Zhu, F. Li, Q. Wang, and B. Liu, High-performance solid-state organic dye sensitized solar cells with P3HT as hole transporter. The Journal of Physical Chemistry C, 2011. 115(14): p. 7038-7043.
    81. Saito, Y., N. Fukuri, R. Senadeera, T. Kitamura, Y. Wada, and S. Yanagida, Solid state dye sensitized solar cells using in situ polymerized PEDOTs as hole conductor. Electrochemistry communications, 2004. 6(1): p. 71-74.
    82. Wang, Y., K. Yang, S.-C. Kim, R. Nagarajan, L.A. Samuelson, and J. Kumar, In situ polymerized carboxylated diacetylene as a hole conductor in solid-state dye-sensitized solar cells. Chemistry of materials, 2006. 18(18): p. 4215-4217.
    83. Song, L., W. Wang, S. Pröller, D. Moseguí González, J. Schlipf, C.J. Schaffer, K. Peters, E.M. Herzig, S. Bernstorff, and T. Bein, In Situ Study of Degradation in P3HT–Titania-Based Solid-State Dye-Sensitized Solar Cells. ACS Energy Letters, 2017. 2(5): p. 991-997.
    84. Li, X., B. Xu, P. Liu, Y. Hu, L. Kloo, J. Hua, L. Sun, and H. Tian, Molecular engineering of D–A–π–A sensitizers for highly efficient solid-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2017. 5(7): p. 3157-3166.
    85. Chen, W.-C., Y.-H. Lee, C.-Y. Chen, K.-C. Kau, L.-Y. Lin, C.-A. Dai, C.-G. Wu, K.-C. Ho, J.-K. Wang, and L. Wang, Self-Assembled All-Conjugated Block Copolymer as an Effective Hole Conductor for Solid-State Dye-Sensitized Solar Cells. ACS Nano, 2014. 8(2): p. 1254-1262.
    86. Kim, J., J.K. Koh, B. Kim, S.H. Ahn, H. Ahn, D.Y. Ryu, J.H. Kim, and E. Kim, Enhanced Performance of I2-Free Solid-State Dye-Sensitized Solar Cells with Conductive Polymer up to 6.8%. Advanced Functional Materials, 2011. 21(24): p. 4633-4639.
    87. Sakamoto, H., S. Igarashi, M. Uchida, K. Niume, and M. Nagai, Highly efficient all solid state dye-sensitized solar cells by the specific interaction of CuI with NCS groups II. Enhancement of the photovoltaic characteristics. Organic Electronics, 2012. 13(3): p. 514-518.
    88. Yu, Q., Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, and P. Wang, High-Efficiency Dye-Sensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States. ACS Nano, 2010. 4(10): p. 6032-6038.
    89. Boschloo, G., L. Häggman, and A. Hagfeldt, Quantification of the effect of 4-tert-butylpyridine addition to I-/I3-redox electrolytes in dye-sensitized nanostructured TiO2 solar cells. The Journal of Physical Chemistry B, 2006. 110(26): p. 13144-13150.
    90. Chen, D.-Y., W.-H. Tseng, S.-P. Liang, C.-I. Wu, C.-W. Hsu, Y. Chi, W.-Y. Hung, and P.-T. Chou, Application of F4TCNQ doped spiro-MeOTAD in high performance solid state dye sensitized solar cells. Physical Chemistry Chemical Physics, 2012. 14(33): p. 11689-11694.
    91. Xu, M., Y. Rong, Z. Ku, A. Mei, X. Li, and H. Han, Improvement in Solid-State Dye Sensitized Solar Cells by p-Type Doping with Lewis Acid SnCl4. The Journal of Physical Chemistry C, 2013. 117(44): p. 22492-22496.
    92. Abate, A., T. Leijtens, S. Pathak, J. Teuscher, R. Avolio, M.E. Errico, J. Kirkpatrik, J.M. Ball, P. Docampo, and I. McPherson, Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013. 15(7): p. 2572-2579.
    93. Xu, B., J. Huang, H. Ågren, L. Kloo, A. Hagfeldt, and L. Sun, AgTFSI as p‐Type Dopant for Efficient and Stable Solid‐State Dye‐Sensitized and Perovskite Solar Cells. ChemSusChem, 2014. 7(12): p. 3252-3256.
    94. Docampo, P., S. Guldin, T. Leijtens, N.K. Noel, U. Steiner, and H.J. Snaith, Lessons learned: from dye‐sensitized solar cells to all‐solid‐state hybrid devices. Advanced Materials, 2014. 26(24): p. 4013-4030.
    95. Cappel, U.B., T. Daeneke, and U. Bach, Oxygen-Induced Doping of Spiro-MeOTAD in Solid-State Dye-Sensitized Solar Cells and Its Impact on Device Performance. Nano Letters, 2012. 12(9): p. 4925-4931.
    96. Abate, A., D.J. Hollman, J.l. Teuscher, S. Pathak, R. Avolio, G. D’Errico, G. Vitiello, S. Fantacci, and H.J. Snaith, Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells. Journal of the american chemical society, 2013. 135(36): p. 13538-13548.
    97. Hamwi, S., J. Meyer, T. Winkler, T. Riedl, and W. Kowalsky, p-type doping efficiency of MoO 3 in organic hole transport materials. Applied Physics Letters, 2009. 94(25): p. 174.
    98. Meyer, J., S. Hamwi, S. Schmale, T. Winkler, H.-H. Johannes, T. Riedl, and W. Kowalsky, A strategy towards p-type doping of organic materials with HOMO levels beyond 6 eV using tungsten oxide. Journal of Materials Chemistry, 2009. 19(6): p. 702-705.
    99. Hock, R., T. Mayer, and W. Jaegermann, p-Type Doping of Spiro-MeOTAD with WO3 and the Spiro-MeOTAD/WO3 Interface Investigated by Synchrotron-Induced Photoelectron Spectroscopy. The Journal of Physical Chemistry C, 2012. 116(34): p. 18146-18154.
    100. Fang, X., T. Ma, G. Guan, M. Akiyama, T. Kida, and E. Abe, Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell. Journal of Electroanalytical Chemistry, 2004. 570(2): p. 257-263.
    101. Lan, J.-L., Y.-Y. Wang, C.-C. Wan, T.-C. Wei, H.-P. Feng, C. Peng, H.-P. Cheng, Y.-H. Chang, and W.-C. Hsu, The simple and easy way to manufacture counter electrode for dye-sensitized solar cells. Current Applied Physics, 2010. 10(2): p. S168-S171.
    102. Wei, T., C. Wan, and Y. Wang, Poly (N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells. Applied Physics Letters, 2006. 88(10): p. 103122.
    103. Chung, I., B. Lee, J. He, R.P. Chang, and M.G. Kanatzidis, All-solid-state dye-sensitized solar cells with high efficiency. Nature, 2012. 485(7399): p. 486.
    104. Schmidt-Mende, L., S.M. Zakeeruddin, and M. Grätzel, Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic Ruthenium-dye. Applied Physics Letters, 2005. 86(1): p. 013504.
    105. Snaith, H.J., A.J. Moule, C. Klein, K. Meerholz, R.H. Friend, and M. Grätzel, Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture. Nano Letters, 2007. 7(11): p. 3372-3376.
    106. Robson, K.C., B.D. Koivisto, T.J. Gordon, T. Baumgartner, and C.P. Berlinguette, Triphenylamine-modified ruthenium (II) terpyridine complexes: enhancement of light absorption by conjugated bridging motifs. Inorganic chemistry, 2010. 49(12): p. 5335-5337.
    107. Chen, C.-Y., M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C.-h. Ngoc-le, J.-D. Decoppet, J.-H. Tsai, C. Grätzel, and C.-G. Wu, Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS nano, 2009. 3(10): p. 3103-3109.
    108. Cao, Y., Y. Bai, Q. Yu, Y. Cheng, S. Liu, D. Shi, F. Gao, and P. Wang, Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(hexylthio) thiophene conjugated bipyridine. The Journal of Physical Chemistry C, 2009. 113(15): p. 6290-6297.
    109. Wang, M., S.J. Moon, M. Xu, K. Chittibabu, P. Wang, N.L. Cevey‐Ha, R. Humphry‐Baker, S.M. Zakeeruddin, and M. Graetzel, Efficient and stable solid‐state dye‐sensitized solar cells based on a high‐molar‐extinction‐coefficient sensitizer. Small, 2010. 6(2): p. 319-324.
    110. Wang, M., J. Liu, N.-L. Cevey-Ha, S.-J. Moon, P. Liska, R. Humphry-Baker, J.-E. Moser, C. Grätzel, P. Wang, and S.M. Zakeeruddin, High efficiency solid-state sensitized heterojunction photovoltaic device. Nano Today, 2010. 5(3): p. 169-174.
    111. Yum, J.H., P. Chen, M. Grätzel, and M.K. Nazeeruddin, Recent Developments in Solid‐State Dye‐Sensitized Solar Cells. ChemSusChem, 2008. 1(8‐9): p. 699-707.
    112. Schmidt‐Mende, L., U. Bach, R. Humphry‐Baker, T. Horiuchi, H. Miura, S. Ito, S. Uchida, and M. Grätzel, Organic Dye for Highly Efficient Solid‐State Dye‐Sensitized Solar Cells. Advanced Materials, 2005. 17(7): p. 813-815.
    113. Snaith, H.J., A. Petrozza, S. Ito, H. Miura, and M. Grätzel, Charge Generation and Photovoltaic Operation of Solid-State Dye-Sensitized Solar Cells Incorporating a High Extinction Coefficient Indolene-Based Sensitizer. Advanced Functional Materials, 2009. 19(11): p. 1810-1818.
    114. Docampo, P., A. Hey, S. Guldin, R. Gunning, U. Steiner, and H.J. Snaith, Pore Filling of Spiro‐OMeTAD in Solid‐State Dye‐Sensitized Solar Cells Determined Via Optical Reflectometry. Advanced Functional Materials, 2012. 22(23): p. 5010-5019.
    115. Cai, N., S.-J. Moon, L. Cevey-Ha, T. Moehl, R. Humphry-Baker, P. Wang, S.M. Zakeeruddin, and M. Grätzel, An organic D-π-A dye for record efficiency solid-state sensitized heterojunction solar cells. Nano letters, 2011. 11(4): p. 1452-1456.
    116. Gabrielsson, E., H. Ellis, S. Feldt, H. Tian, G. Boschloo, A. Hagfeldt, and L. Sun, Convergent/Divergent Synthesis of a Linker-Varied Series of Dyes for Dye-Sensitized Solar Cells Based on the D35 Donor. Advanced Energy Materials, 2013. 3(12): p. 1647-1656.
    117. Xu, B., H. Tian, L. Lin, D. Qian, H. Chen, J. Zhang, N. Vlachopoulos, G. Boschloo, Y. Luo, F. Zhang, A. Hagfeldt, and L. Sun, Integrated Design of Organic Hole Transport Materials for Efficient Solid-State Dye-Sensitized Solar Cells. Advanced Energy Materials, 2015. 5(3): p. 1401185.
    118. Shen, Z., B. Xu, P. Liu, Y. Hu, Y. Yu, H. Ding, L. Kloo, J. Hua, L. Sun, and H. Tian, High performance solid-state dye-sensitized solar cells based on organic blue-colored dyes. Journal of Materials Chemistry A, 2017. 5(3): p. 1242-1247.
    119. Kay, A. and M. Grätzel, Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells, 1996. 44(1): p. 99-117.
    120. Zhu, G., L. Yang, C. Zhang, G. Du, N. Fan, Z. Luo, X. Zhang, and J. Zhang, Unveiling the Critical Role of Oxidants and Additives in Doped Spiro-OMeTAD toward Stable and Efficient Perovskite Solar Cells. ACS Applied Energy Materials, 2022. 5(3): p. 3595-3604.
    121. Burschka, J., F. Kessler, M.K. Nazeeruddin, and M. Grätzel, Co (III) complexes as p-dopants in solid-state dye-sensitized solar cells. Chemistry of Materials, 2013. 25(15): p. 2986-2990.
    122. Xu, B., E. Gabrielsson, M. Safdari, M. Cheng, Y. Hua, H. Tian, J.M. Gardner, L. Kloo, and L. Sun, 1, 1, 2, 2‐Tetrachloroethane (TeCA) as a Solvent Additive for Organic Hole Transport Materials and Its Application in Highly Efficient Solid‐State Dye‐Sensitized Solar Cells. Advanced Energy Materials, 2015. 5(10).
    123. Gordon, M. and R. Macrae, UV—visible spectrophotometry, in Instrumental Analysis in the Biological Sciences. 1987, Springer. p. 92-116.
    124. Pavia, D.L., G.M. Lampman, and G.S. Kriz, Spectroscopy. 2010: Brooks/Cole, Cengage Learning.
    125. Skoog, D.A. and F.J. Holler, Analytical Chemistry: An Introduction. 2000: Cengage Learning.
    126. Jones, E., S. Michael, and G.S. Sittampalam, Basics of assay equipment and instrumentation for high throughput screening. Assay Guidance Manual [Internet], 2016.
    127. Calloway, D., Beer-lambert law. J. Chem. Educ, 1997. 74(7): p. 744.
    128. Swinehart, D., The beer-lambert law. J. Chem. Educ, 1962. 39(7): p. 333.
    129. Sacco, A., Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 2017. 79: p. 814-829.
    130. Bisquert, J., Influence of the boundaries in the impedance of porous film electrodes. Physical Chemistry Chemical Physics, 2000. 2(18): p. 4185-4192.
    131. Bisquert, J., Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer. The Journal of Physical Chemistry B, 2002. 106(2): p. 325-333.
    132. Fabregat-Santiago, F., J. Bisquert, G. Garcia-Belmonte, G. Boschloo, and A. Hagfeldt, Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Solar Energy Materials and Solar Cells, 2005. 87(1): p. 117-131.
    133. Halme, J., Linking optical and electrical small amplitude perturbation techniques for dynamic performance characterization of dye solar cells. Physical Chemistry Chemical Physics, 2011. 13(27): p. 12435-12446.
    134. Fabregat-Santiago, F., J. Bisquert, L. Cevey, P. Chen, M. Wang, S.M. Zakeeruddin, and M. Grätzel, Electron Transport and Recombination in Solid-State Dye Solar Cell with Spiro-OMeTAD as Hole Conductor. Journal of the American Chemical Society, 2009. 131(2): p. 558-562.
    135. Fabregat-Santiago, F., J. Bisquert, E. Palomares, S.A. Haque, and J.R. Durrant, Impedance spectroscopy study of dye-sensitized solar cells with undoped spiro-OMeTAD as hole conductor. Journal of Applied Physics, 2006. 100(3): p. 034510.
    136. Nenning, A., M. Gerstl, M. Bram, and A.K. Opitz, Mechanistic insight into porous electrode impedance: An example of Ni+ YSZ cermet anodes. ECS Transactions, 2019. 91(1): p. 479.
    137. 胡啟章, 電化學原理與方法. 2002: 五南圖書出版股份有限公司.
    138. Heinze, J., Cyclic voltammetry—“electrochemical spectroscopy”. New analytical methods (25). Angewandte Chemie International Edition, 1984. 23(11): p. 831-847.
    139. Libretexts, C., Potential against time program for cyclic voltammetry, C. Voltammetry, Editor. 2017.
    140. Zanello, P., C. Nervi, and F.F. De Biani, Inorganic electrochemistry: theory, practice and application. 2019: Royal Society of Chemistry.
    141. Ceredig, R., George Gabriel Stokes as a biologist. Philosophical Transactions of the Royal Society A, 2020. 378(2179): p. 20200105.
    142. Lichtman, J.W. and J.-A. Conchello, Fluorescence microscopy. Nature methods, 2005. 2(12): p. 910-919.
    143. 謝嘉民、賴一凡、林永昌、枋志堯, 光激發螢光量測的原理, 架構及應用. 奈米通訊, 2005. 12(2): p. 28-31.
    144. 馮世維副教授實驗室, 時間解析光激螢光裝置圖. 國立高雄大雄應用物理學系
    145. Zhang, L., X. Yang, S. Li, Z. Yu, A. Hagfeldt, and L. Sun, Electron‐Withdrawing Anchor Group of Sensitizer for Dye‐Sensitized Solar Cells, Cyanoacrylic Acid, or Benzoic Acid? Solar Rrl, 2020. 4(3): p. 1900436.
    146. Liu, S., Y. Jiao, Y. Ding, X. Fan, J. Song, B. Mi, and Z. Gao, Position engineering of cyanoacrylic-acid anchoring group in a dye for DSSC applications. Dyes and Pigments, 2020. 180: p. 108470.
    147. Liu, Y., Y. Cao, W. Zhang, M. Stojanovic, M.I. Dar, P. Péchy, Y. Saygili, A. Hagfeldt, S.M. Zakeeruddin, and M. Grätzel, Electron-Affinity-Triggered Variations on the Optical and Electrical Properties of Dye Molecules Enabling Highly Efficient Dye-Sensitized Solar Cells. Angewandte Chemie International Edition, 2018. 57(43): p. 14125-14128.
    148. Ito, S., H. Matsui, K.-i. Okada, S.-i. Kusano, T. Kitamura, Y. Wada, and S. Yanagida, Calibration of solar simulator for evaluation of dye-sensitized solar cells. Solar energy materials and solar cells, 2004. 82(3): p. 421-429.
    149. 陳頤承、郭昭顯、陳俊亨, 太陽電池量測技術, in 工業材料雜誌. 2008. p. 249-256.
    150. Boxwell, M., Solar Electricity Handbook: A Simple, Practical Guide to Solar Energy-Designing and Installing Photovoltaic Solar Electric Systems. 2010: Greenstream Publishing.
    151. Grätzel, M., Photoelectrochemical cells. Nature, 2001. 414(6861): p. 338-344.
    152. Andrade, L.M.M., Study and characterization of grätzel solar cells. 2010, Universidade do Porto (Portugal).
    153. Grätzel, M., Photoelectrochemical cells, in Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. 2011, World Scientific. p. 26-32.
    154. Chen, Z., T.G. Deutsch, H.N. Dinh, K. Domen, K. Emery, A.J. Forman, N. Gaillard, R. Garland, C. Heske, T.F. Jaramillo, A. Kleiman-Shwarsctein, E. Miller, K. Takanabe, and J. Turner, Incident Photon-to-Current Efficiency and Photocurrent Spectroscopy, in Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols. 2013, Springer New York: New York, NY. p. 87-97.
    155. Chen, Z., T.G. Deutsch, H.N. Dinh, K. Domen, K. Emery, A.J. Forman, N. Gaillard, R. Garland, C. Heske, T.F. Jaramillo, A. Kleiman-Shwarsctein, E. Miller, K. Takanabe, and J. Turner, Efficiency Definitions in the Field of PEC, in Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols. 2013, Springer New York: New York, NY. p. 7-16.
    156. Gong, J. and S. Krishnan, Mathematical modeling of dye-sensitized solar cells, in Dye-Sensitized Solar Cells. 2019, Elsevier. p. 51-81.
    157. Bisquert, J., F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, and S. Giménez, Electron Lifetime in Dye-Sensitized Solar Cells: Theory and Interpretation of Measurements. The Journal of Physical Chemistry C, 2009. 113(40): p. 17278-17290.
    158. Grätzel, M., Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2004. 164(1-3): p. 3-14.
    159. Snaith, H.J., R. Humphry-Baker, P. Chen, I. Cesar, S.M. Zakeeruddin, and M. Grätzel, Charge collection and pore filling in solid-state dye-sensitized solar cells. Nanotechnology, 2008. 19(42): p. 424003.
    160. Zhang, J., M. Freitag, A. Hagfeldt, and G. Boschloo, Solid-State Dye-Sensitized Solar Cells, in Molecular Devices for Solar Energy Conversion and Storage, H. Tian, G. Boschloo, and A. Hagfeldt, Editors. 2018, Springer Singapore: Singapore. p. 151-185.
    161. Ding, I.-K., N. Tétreault, J. Brillet, B.E. Hardin, E.H. Smith, S.J. Rosenthal, F. Sauvage, M. Grätzel, and M.D. McGehee, Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance. Advanced Functional Materials, 2009. 19(15): p. 2431-2436.
    162. Nonomura, K., N. Vlachopoulos, E. Unger, L. Häggman, A. Hagfeldt, and G. Boschloo, Blocking the charge recombination with diiodide radicals by TiO2 compact layer in dye-sensitized solar cells. Journal of The Electrochemical Society, 2019. 166(9): p. B3203.
    163. Lee, J.G., J.H. Cheon, H.S. Yang, D.K. Lee, and J.H. Kim, Enhancement of photovoltaic performance in dye-sensitized solar cells with the spin-coated TiO2 blocking layer. Journal of nanoscience and nanotechnology, 2012. 12(7): p. 6026-6030.
    164. Sangiorgi, A., R. Bendoni, N. Sangiorgi, A. Sanson, and B. Ballarin, Optimized TiO2 blocking layer for dye-sensitized solar cells. Ceramics International, 2014. 40(7): p. 10727-10735.
    165. Amiri, O. and M. Salavati-Niasari, High efficiency dye-sensitized solar cells (9.3%) by using a new compact layer: Decrease series resistance and increase shunt resistance. Materials Letters, 2015. 160: p. 24-27.
    166. Chen, C., W. Zhang, J. Cong, M. Cheng, B. Zhang, H. Chen, P. Liu, R. Li, M. Safdari, L. Kloo, and L. Sun, Cu(II) Complexes as p-Type Dopants in Efficient Perovskite Solar Cells. ACS Energy Letters, 2017. 2(2): p. 497-503.
    167. Kim, S., S. Bae, S.-W. Lee, K. Cho, K.D. Lee, H. Kim, S. Park, G. Kwon, S.-W. Ahn, H.-M. Lee, Y. Kang, H.-S. Lee, and D. Kim, Relationship between ion migration and interfacial degradation of CH3NH3PbI3 perovskite solar cells under thermal conditions. Scientific Reports, 2017. 7(1): p. 1200.
    168. Ito, S., H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Péchy, and M. Grätzel, High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chemical Communications, 2008(41): p. 5194-5196.
    169. Horiuchi, T., H. Miura, K. Sumioka, and S. Uchida, High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. Journal of the American Chemical Society, 2004. 126(39): p. 12218-12219.
    170. Krüger, J., R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, and U. Bach, High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Applied Physics Letters, 2001. 79(13): p. 2085-2087.
    171. Selvaraj, A.R.K. and S. Hayase, Molecular dynamics simulations on the aggregation behavior of indole type organic dye molecules in dye-sensitized solar cells. Journal of Molecular Modeling, 2012. 18(5): p. 2099-2104.
    172. Tang, C.W., Two‐layer organic photovoltaic cell. Applied Physics Letters, 1986. 48(2): p. 183-185.
    173. Burfeindt, B., T. Hannappel, W. Storck, and F. Willig, Measurement of temperature-independent femtosecond interfacial electron transfer from an anchored molecular electron donor to a semiconductor as acceptor. The Journal of Physical Chemistry, 1996. 100(41): p. 16463-16465.
    174. Li, C. and H. Wonneberger, Perylene imides for organic photovoltaics: yesterday, today, and tomorrow. Advanced Materials, 2012. 24(5): p. 613-636.
    175. Li, C. and K. Müllen, Perylenes in Organic Photovoltaics, in Eco-and Renewable Energy Materials. 2013, Springer. p. 25-52.
    176. Ferrere, S., A. Zaban, and B.A. Gregg, Dye sensitization of nanocrystalline tin oxide by perylene derivatives. The Journal of Physical Chemistry B, 1997. 101(23): p. 4490-4493.
    177. Ferrere, S. and B.A. Gregg, New perylenes for dye sensitization of TiO 2. New Journal of Chemistry, 2002. 26(9): p. 1155-1160.
    178. Wang, S., Y. Li, C. Du, Z. Shi, S. Xiao, D. Zhu, E. Gao, and S. Cai, Dye sensitization of nanocrystalline TiO 2 by perylene derivatives. Synthetic metals, 2002. 128(3): p. 299-304.
    179. Zafer, C., M. Kus, G. Turkmen, H. Dincalp, S. Demic, B. Kuban, Y. Teoman, and S. Icli, New perylene derivative dyes for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2007. 91(5): p. 427-431.
    180. Shibano, Y., T. Umeyama, Y. Matano, and H. Imahori, Electron-donating perylene tetracarboxylic acids for dye-sensitized solar cells. Organic Letters, 2007. 9(10): p. 1971-1974.
    181. Edvinsson, T., C. Li, N. Pschirer, J. Schöneboom, F. Eickemeyer, R. Sens, G. Boschloo, A. Herrmann, K. Müllen, and A. Hagfeldt, Intramolecular Charge-Transfer Tuning of Perylenes:  Spectroscopic Features and Performance in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 2007. 111(42): p. 15137-15140.
    182. Fortage, J., M. Séverac, C. Houarner-Rassin, Y. Pellegrin, E. Blart, and F. Odobel, Synthesis of new perylene imide dyes and their photovoltaic performances in nanocrystalline TiO2 dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2008. 197(2–3): p. 156-169.
    183. Cappel, U.B., M.H. Karlsson, N.G. Pschirer, F. Eickemeyer, J. Schöneboom, P. Erk, G. Boschloo, and A. Hagfeldt, A Broadly Absorbing Perylene Dye for Solid-State Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 2009. 113(33): p. 14595-14597.
    184. Li, C., Z. Liu, J. Schoneboom, F. Eickemeyer, N.G. Pschirer, P. Erk, A. Herrmann, and K. Mullen, Perylenes as sensitizers in hybrid solar cells: how molecular size influences performance. Journal of Materials Chemistry, 2009. 19(30): p. 5405-5415.
    185. Li, C., J.-H. Yum, S.-J. Moon, A. Herrmann, F. Eickemeyer, N.G. Pschirer, P. Erk, J. Schöneboom, K. Müllen, M. Grätzel, and M.K. Nazeeruddin, An Improved Perylene Sensitizer for Solar Cell Applications. ChemSusChem, 2008. 1(7): p. 615-618.
    186. Jiang, W., H. Qian, Y. Li, and Z. Wang, Heteroatom-Annulated Perylenes: Practical Synthesis, Photophysical Properties, and Solid-State Packing Arrangement. The Journal of Organic Chemistry, 2008. 73(18): p. 7369-7372.
    187. Zhao, G.-J. and K.-L. Han, Excited State Electronic Structures and Photochemistry of Heterocyclic Annulated Perylene (HAP) Materials Tuned by Heteroatoms: S, Se, N, O, C, Si, and B. The Journal of Physical Chemistry A, 2009. 113(16): p. 4788-4794.
    188. Zhu, L., C. Jiao, D. Xia, and J. Wu, N-Annulated perylene dyes with adjustable photophysical properties. Tetrahedron Letters, 2011. 52(48): p. 6411-6414.
    189. Luo, J., M. Xu, R. Li, K.-W. Huang, C. Jiang, Q. Qi, W. Zeng, J. Zhang, C. Chi, P. Wang, and J. Wu, N-Annulated Perylene as An Efficient Electron Donor for Porphyrin-Based Dyes: Enhanced Light-Harvesting Ability and High-Efficiency Co(II/III)-Based Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2014. 136(1): p. 265-272.
    190. Yao, Z., C. Yan, M. Zhang, R. Li, Y. Cai, and P. Wang, N‐Annulated Perylene as a Coplanar π‐Linker Alternative to Benzene as a Low Energy‐Gap, Metal‐Free Dye in Sensitized Solar Cells. Advanced Energy Materials, 2014. 4(12).
    191. Zhang, M., Z. Yao, C. Yan, Y. Cai, Y. Ren, J. Zhang, and P. Wang, Unraveling the Pivotal Impacts of Electron-Acceptors on Light Absorption and Carrier Photogeneration in Perylene Dye Sensitized Solar Cells. ACS Photonics, 2014. 1(8): p. 710-717.
    192. Qi, Q., X. Wang, L. Fan, B. Zheng, W. Zeng, J. Luo, K.-W. Huang, Q. Wang, and J. Wu, N-annulated perylene-based push–pull-type sensitizers. Organic Letters, 2015. 17(3): p. 724-727.
    193. Yan, C., W. Ma, Y. Ren, M. Zhang, and P. Wang, Efficient Triarylamine–Perylene Dye-Sensitized Solar Cells: Influence of Triple-Bond Insertion on Charge Recombination. ACS applied materials & interfaces, 2014. 7(1): p. 801-809.
    194. Yang, L., Y. Ren, Z. Yao, C. Yan, W. Ma, and P. Wang, Electron-acceptor-dependent light absorption and charge-transfer dynamics in N-annulated perylene dye-sensitized solar cells. The Journal of Physical Chemistry C, 2014. 119(2): p. 980-988.
    195. Yang, L., Z. Zheng, Y. Li, W. Wu, H. Tian, and Z. Wang, N-Annulated perylene-based metal-free organic sensitizers for dye-sensitized solar cells. Chemical Communications, 2015. 51(23): p. 4842-4845.
    196. Yao, Z., H. Wu, Y. Ren, Y. Guo, and P. Wang, A structurally simple perylene dye with ethynylbenzothiadiazole-benzoic acid as the electron acceptor achieves an over 10% power conversion efficiency. Energy & Environmental Science, 2015. 8(5): p. 1438-1442.
    197. Yao, Z., M. Zhang, R. Li, L. Yang, Y. Qiao, and P. Wang, A Metal‐Free N‐Annulated Thienocyclopentaperylene Dye: Power Conversion Efficiency of 12% for Dye‐Sensitized Solar Cells. Angewandte Chemie, 2015. 127(20): p. 6092-6096.
    198. Yang, L., Z. Yao, J. Liu, J. Wang, and P. Wang, A systematic study on the influence of electron-acceptors in phenanthrocarbazole dye-sensitized solar cells. ACS applied materials & interfaces, 2016. 8(15): p. 9839-9848.
    199. Ito, S., Investigation of dyes for dye-sensitized solar cells: Ruthenium-complex dyes, metal-free dyes, metal-complex porphyrin dyes and natural dyes. Solar Cells-Dye-Sensitized Devices, 2011: p. 19-48.
    200. Barbé, C.J., F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Grätzel, Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications. Journal of the American Ceramic Society, 1997. 80(12): p. 3157-3171.
    201. Nazeeruddin, M.K., F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. Journal of the American Chemical Society, 2005. 127(48): p. 16835-16847.
    202. Howard, I.A., M. Meister, B. Baumeier, H. Wonneberger, N. Pschirer, R. Sens, I. Bruder, C. Li, K. Müllen, D. Andrienko, and F. Laquai, Two Channels of Charge Generation in Perylene Monoimide Solid-State Dye-Sensitized Solar Cells. Advanced Energy Materials, 2014. 4(2): p. 1300640.
    203. Wonneberger, H., N. Pschirer, I. Bruder, J. Schöneboom, C.-Q. Ma, P. Erk, C. Li, P. Bäuerle, and K. Müllen, Double Donor-Thiophene Dendron-Perylene Monoimide: Efficient Light-Harvesting Metal-Free Chromophore for Solid-State Dye-Sensitized Solar Cells. Chemistry – An Asian Journal, 2011. 6(7): p. 1744-1747.
    204. Feldt, S.M., E.A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo, and A. Hagfeldt, Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells. Journal of the American Chemical Society, 2010. 132(46): p. 16714-16724.
    205. Jiang, X., T. Marinado, E. Gabrielsson, D.P. Hagberg, L. Sun, and A. Hagfeldt, Structural modification of organic dyes for efficient coadsorbent-free dye-sensitized solar cells. The Journal of Physical Chemistry C, 2010. 114(6): p. 2799-2805.
    206. Chen, C.Y., J.H. Chang, K.M. Chiang, H.L. Lin, S.Y. Hsiao, and H.W. Lin, Perovskite Photovoltaics for Dim‐Light Applications. Advanced Functional Materials, 2015. 25(45): p. 7064-7070.
    207. De Rossi, F., T. Pontecorvo, and T.M. Brown, Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting. Applied Energy, 2015. 156: p. 413-422.
    208. Wang, C.-L., P.-T. Lin, Y.-F. Wang, C.-W. Chang, B.-Z. Lin, H.-H. Kuo, C.-W. Hsu, S.-H. Tu, and C.-Y. Lin, Cost-Effective Anthryl Dyes for Dye-Sensitized Cells under One Sun and Dim Light. The Journal of Physical Chemistry C, 2015. 119(43): p. 24282-24289.
    209. Liu, Y.-C., H.-H. Chou, F.-Y. Ho, H.-J. Wei, T.-C. Wei, and C.-Y. Yeh, A feasible scalable porphyrin dye for dye-sensitized solar cells under one sun and dim light environments. Journal of Materials Chemistry A, 2016. 4(30): p. 11878-11887.
    210. Zhai, P., H. Lee, Y.-T. Huang, T.-C. Wei, and S.-P. Feng, Study on the blocking effect of a quantum-dot TiO 2 compact layer in dye-sensitized solar cells with ionic liquid electrolyte under low-intensity illumination. Journal of Power Sources, 2016. 329: p. 502-509.
    211. Looker, J., Mononitration of perylene. Preparation and structure proof of the 1 and 3 isomers. The Journal of Organic Chemistry, 1972. 37(21): p. 3379-3381.
    212. Tian, L., Y. Wang, Y. Zhang, X. Li, W. Wu, and B. Liu, Molecular Engineering of Indoline Dyes and Their Application in Dye-Sensitized Solar Cells: Effect of Planarity and Side Chain on Interfacial Charge-Transfer Processes. ACS Applied Energy Materials, 2021. 4(1): p. 242-248.
    213. Howie, W.H., F. Claeyssens, H. Miura, and L.M. Peter, Characterization of Solid-State Dye-Sensitized Solar Cells Utilizing High Absorption Coefficient Metal-Free Organic Dyes. Journal of the American Chemical Society, 2008. 130: p. 1367-1375.
    214. Tingare, Y.S., N.S.n. Vinh, H.-H. Chou, Y.-C. Liu, Y.-S. Long, T.-C. Wu, T.-C. Wei, and C.-Y. Yeh, New Acetylene-Bridged 9,10-Conjugated Anthracene Sensitizers: Application in Outdoor and Indoor Dye-Sensitized Solar Cells. Advanced Energy Materials, 2017: p. 1700032.
    215. Po, R., G. Bianchi, C. Carbonera, and A. Pellegrino, “All That Glisters Is Not Gold”: An Analysis of the Synthetic Complexity of Efficient Polymer Donors for Polymer Solar Cells. Macromolecules, 2015. 48(3): p. 453-461.
    216. Sanchez, R.S. and E. Mas-Marza, Light-induced effects on Spiro-OMeTAD films and hybrid lead halide perovskite solar cells. Solar Energy Materials and Solar Cells, 2016. 158: p. 189-194.
    217. Cappel, U.B., E.A. Gibson, A. Hagfeldt, and G. Boschloo, Dye Regeneration by Spiro-MeOTAD in Solid State Dye-Sensitized Solar Cells Studied by Photoinduced Absorption Spectroscopy and Spectroelectrochemistry. The Journal of Physical Chemistry C, 2009. 113(15): p. 6275-6281.
    218. Zhang, X., Y. Xu, F. Giordano, M. Schreier, N. Pellet, Y. Hu, C. Yi, N. Robertson, J. Hua, S.M. Zakeeruddin, H. Tian, and M. Grätzel, Molecular Engineering of Potent Sensitizers for Very Efficient Light Harvesting in Thin-Film Solid-State Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2016. 138(34): p. 10742-10745.
    219. Liu, P., W. Sharmoukh, B. Xu, Y.Y. Li, G. Boschloo, L. Sun, and L. Kloo, Novel and Stable D–A−π–A Dyes for Efficient Solid-State Dye-Sensitized Solar Cells. ACS Omega, 2017. 2(5): p. 1812-1819.
    220. Cao, Y., Y. Saygili, A. Ummadisingu, J. Teuscher, J. Luo, N. Pellet, F. Giordano, S.M. Zakeeruddin, J.E. Moser, M. Freitag, A. Hagfeldt, and M. Grätzel, 11% efficiency solid-state dye-sensitized solar cells with copper(II/I) hole transport materials. Nature Communications, 2017. 8(1): p. 15390.
    221. Liu, P., L. Wang, K.M. Karlsson, Y. Hao, J. Gao, B. Xu, G. Boschloo, L. Sun, and L. Kloo, Molecular Engineering of D−π–A Type of Blue-Colored Dyes for Highly Efficient Solid-State Dye-Sensitized Solar Cells through Co-Sensitization. ACS Applied Materials & Interfaces, 2018. 10(42): p. 35946-35952.
    222. Poynter, R.L., Microwave Spectrum, Quadrupolar Coupling Constants, and Dipole Moment of Chlorobenzene. The Journal of Chemical Physics, 1963. 39(8): p. 1962-1966.
    223. Partington, J.R. and E.G. Cowley, Dipole Moment of Acetonitrile. Nature, 1935. 135(3412): p. 474-474.
    224. Niedzwiedzki, D.M., Photophysical properties of N719 and Z907 dyes, benchmark sensitizers for dye-sensitized solar cells, at room and low temperature. Physical Chemistry Chemical Physics, 2021. 23(10): p. 6182-6189.
    225. Puteri, Z.R., Y. Kusumawati, A.L. Ivansyah, and M.A. Martoprawiro, Computational study to determine redox potential of nitroxide radical and their derivatives compounds along with their analysis as redox-coupe in dye sensitized solar cell’s (DSSC). AIP Conference Proceedings, 2018. 2049(1): p. 020093.
    226. Handa, S., H. Wietasch, M. Thelakkat, J.R. Durrant, and S.A. Haque, Reducing charge recombination losses in solid state dye sensitized solar cells: the use of donor–acceptor sensitizer dyes. Chemical Communications, 2007(17): p. 1725-1727.
    227. Fan, Y.-H., C.-Y. Ho, and Y.-J. Chang, Enhancement of Dye-Sensitized Solar Cells Efficiency Using Mixed-Phase TiO<sub>2</sub> Nanoparticles as Photoanode. Scanning, 2017. 2017: p. 9152973.
    228. Kim, S.G., M.J. Ju, I.T. Choi, W.S. Choi, H.-J. Choi, J.-B. Baek, and H.K. Kim, Nb-doped TiO 2 nanoparticles for organic dye-sensitized solar cells. RSC advances, 2013. 3(37): p. 16380-16386.
    229. Wang, Q., Z. Zhang, S.M. Zakeeruddin, and M. Grätzel, Enhancement of the Performance of Dye-Sensitized Solar Cell by Formation of Shallow Transport Levels under Visible Light Illumination. The Journal of Physical Chemistry C, 2008. 112(17): p. 7084-7092.
    230. Nissfolk, J., K. Fredin, A. Hagfeldt, and G. Boschloo, Recombination and Transport Processes in Dye-Sensitized Solar Cells Investigated under Working Conditions. The Journal of Physical Chemistry B, 2006. 110(36): p. 17715-17718.
    231. Katoh, R. and A. Furube, Electron injection efficiency in dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014. 20: p. 1-16.
    232. Martín, C., M. Ziółek, and A. Douhal, Ultrafast and fast charge separation processes in real dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016. 26: p. 1-30.
    233. Eom, Y.K., I.T. Choi, S.H. Kang, J. Lee, J. Kim, M.J. Ju, and H.K. Kim, Thieno[3,2-b][1]benzothiophene Derivative as a New π-Bridge Unit in D–π–A Structural Organic Sensitizers with Over 10.47% Efficiency for Dye-Sensitized Solar Cells. Advanced Energy Materials, 2015. 5(15): p. 1500300.
    234. Ammar, A.M., H.S.H. Mohamed, M.M.K. Yousef, G.M. Abdel-Hafez, A.S. Hassanien, and A.S.G. Khalil, Dye-Sensitized Solar Cells (DSSCs) Based on Extracted Natural Dyes. Journal of Nanomaterials, 2019. 2019: p. 1867271.
    235. Ding, I.-K., Pore Filling and Light Trapping in Solid-state Dye-sensitized Solar Cells. 2011: Stanford University.
    236. 蕭博聰、盧明德、洪萬墩、黃亮焜、施順瑋、陳浩維, 染料敏化電池自動化生產技術及室內發電應用 Automated manufacture Technology and Applications of Dye-sensitized solar cell, in 工業材料雜誌. 2019. p. 154-160.
    237. Iro, Z.S., A Brief Review on Electrode Materials for Supercapacitor. International Journal of Electrochemical Science, 2016: p. 10628-10643.
    238. Raza, W., F. Ali, N. Raza, Y. Luo, K.-H. Kim, J. Yang, S. Kumar, A. Mehmood, and E.E. Kwon, Recent advancements in supercapacitor technology. Nano Energy, 2018. 52: p. 441-473.
    239. Miyasaka, T. and T.N. Murakami, The photocapacitor: An efficient self-charging capacitor for direct storage of solar energy. Applied Physics Letters, 2004. 85(17): p. 3932-3934.
    240. Mini, P.A., S.V. Nair, and K.R. Subramanian, Design and development of an integrated device consisting of an independent solar cell with electrical storage capacity. Progress in Photovoltaics: Research and Applications, 2013. 21(5): p. 1153-1157.
    241. Skunik-Nuckowska, M., K. Grzejszczyk, P.J. Kulesza, L. Yang, N. Vlachopoulos, L. Häggman, E. Johansson, and A. Hagfeldt, Integration of solid-state dye-sensitized solar cell with metal oxide charge storage material into photoelectrochemical capacitor. Journal of power sources, 2013. 234: p. 91-99.
    242. Zhang, X., X. Huang, C. Li, and H. Jiang, Dye‐sensitized solar cell with energy storage function through PVDF/ZnO nanocomposite counter electrode. Advanced Materials, 2013. 25(30): p. 4093-4096.
    243. Kulesza, P.J., M. Skunik-Nuckowska, K. Grzejszczyk, N. Vlachopoulos, L. Yang, L. Häggman, and A. Hagfeldt, Development of solid-state photo-supercapacitor by coupling dye-sensitized solar cell utilizing conducting polymer charge relay with proton-conducting membrane based electrochemical capacitor. ECS Transactions, 2013. 50(43): p. 235.
    244. Bagheri, N., A. Aghaei, M.Y. Ghotbi, E. Marzbanrad, N. Vlachopoulos, L. Häggman, M. Wang, G. Boschloo, A. Hagfeldt, and M. Skunik-Nuckowska, Combination of asymmetric supercapacitor utilizing activated carbon and nickel oxide with cobalt polypyridyl-based dye-sensitized solar cell. Electrochimica Acta, 2014. 143: p. 390-397.
    245. Scalia, A., A. Varzi, A. Lamberti, T. Jacob, and S. Passerini, Portable high voltage integrated harvesting-storage device employing dye-sensitized solar module and all-solid-state electrochemical double layer capacitor. Frontiers in chemistry, 2018. 6: p. 443.
    246. Wang, H., H. Yi, X. Chen, and X. Wang, Asymmetric supercapacitors based on nano-architectured nickel oxide/graphene foam and hierarchical porous nitrogen-doped carbon nanotubes with ultrahigh-rate performance. Journal of Materials Chemistry A, 2014. 2(9): p. 3223-3230.

    QR CODE