研究生: |
曾姵淇 Tseng, Pei-Chi |
---|---|
論文名稱: |
THOR受到地震負荷下之 CFD三維池水晃蕩模擬 The CFD simulation of three-dimensional liquid sloshing in THOR under seismic excitation |
指導教授: |
馮玉明
Ferng, Yuh-Ming 林志宏 Lin, Chih-Hung |
口試委員: |
白寶實
Pei, Bau-Shei 曾永信 Tseng, Yung-Shin |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | THOR 、CFD 、流體體積法VOF 、地震加速度 |
外文關鍵詞: | THOR, CFD, VOF, Earthquake acceleration |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
THOR(Tsing Hua Open-pool Reactor)為一裝載小型爐心的大型水池式反應器,由於其內部仍含有燃料,故以大量的液態水覆蓋,帶走其所釋放之大量熱能。由於台灣位處環太平洋地震帶,時常發生地震等天災事故,恐易導致池中池水潑灑出,使池水靜止水位高度下降,造成燃料裸露情況。因此,本研究決定採用計算流體力學(CFD)技術模擬水池在地震力下的池水晃蕩情況,並以數值方法中的流體體積法Volume of fluid (VOF)追蹤波動的水面和晃蕩所引起的碎波,藉以檢測出燃料池在未加有額外檔板和附加檔板後的條件下所損失的水量、地震過後的水位高度、地震中水位的波高、壁面壓力變化和每一秒的最大壓力。
由於計算時間過長,本研究先採用結構較為簡單的沸水式用過燃料池(SFP)作為初步模擬的物理模型,藉以檢測出此方法的可行性,待地震模式之方法論成立後便進階下一步,比較未附加檔板的THOR原模型及另兩項修改方案的晃蕩後結果,其中,此兩項方案分別為加有垂直檔板的模型A及加有水平檔版的模型B。
模擬結果顯示壁面壓力與地震加速度呈正相關性,並非受到自由液面垂直高度的影響。另外,垂直檔板的增加能減少水量的損失,但也會增加水波的最大高度;水平檔板的增加則能有效阻擋水量流失且降低平均波高,但於特殊情況時亦有增加最大波高的風險。
THOR(Tsing Hua Open-pool Reactor) is a large Open-pool Reactor with a small core inside. Since there are still fuels inside THOR, it needs a large amount of water to cover the fuels so as to bring out a great deal of heat. Taiwan situates in Circum-Pacific Seismic Belt, so earthquakes happen in Taiwan very often. The accidents may cause water spill from the pool and hence the exposure of fuels, which results in the damage of nuclear safety. Hence, this study provides a CFD methodology to simulate the liquid sloshing in the pool, and uses Volume of fluid (VOF) to track the free surface of the liquid and small water waves. The methodology can receive the results of the amount of water loss, water level after earthquakes, wave height, and maximum wall pressure per second.
This study took the spent fuel pool model to be the first simulation in order to test the feasibility of the methodology because the structure of SFP is simpler than THOR. After the methodology was verified, this study use it to simulate the liquid sloshing of THOR and other two revised models, Model A and Model B. Model A is the THOR model with vertical baffles and Model B is the one with horizontal baffles.
Finally, the results validate that the vertical baffles and horizontal baffles could reduce the water loss, although they may probably induce higher water wave. Other than that, the results also indicate that wall pressure can be strongly affected by earthquake acceleration.
國. 原科中心, 清華大學水池式反應器(THOR), 國立清華大學 原科中心, 2017,取自:http://thor.web.nthu.edu.tw/files/132-1028-19,r4-1.php?Lang=zh-tw.
國. 原科中心, 清華大學水池式反應器(THOR), 原科中心, 國立清華大學, 2017,取 自:http://thor.web.nthu.edu.tw/files/11-1028-1583.php?Lang=zh-tw.
D. M. Liu., “A numerical study of three-dimensional liquid sloshing in tanks. Journal of Computational Physics,” Journal of Computational Physics 227.8, pp. 3921-3939, 2008.
O. M. Faltinsen, “A numerical nonlinear method of sloshing in tanks with two-dimensional flow,” Journal of Ship Research 22.3, 1978.
O. M. e. a. Faltinsen, “Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth,” Journal of Fluid Mechanics 407 , pp. 201-234, 2000.
Faltinsen, Odd M., and Alexander N. Timokha, “An adaptive multimodal approach to nonlinear sloshing in a rectangular tank,” Journal of Fluid Mechanics 432, pp. 167-200, 2001.
V. e. a. Singal, “CFD analysis of a kerosene fuel tank to reduce liquid sloshing,” Procedia Engineering 69, pp. 1365-1371, 2014.
Kandasamy, T., S. Rakheja, and A. K. W. Ahmed, “An analysis of baffles designs for limiting fluid slosh in partly filled tank trucks,” Open Transportation Journal 4, pp. 23-32, 2010.
Hou, Ling, Fangcheng Li, and Chunliang Wu, “A numerical study of liquid sloshing in a two-dimensional tank under external excitations,” Journal of Marine Science and Application 11.3, pp. 305-310, 2012.
Singal, Vaibhav, et al., “CFD analysis of a kerosene fuel tank to reduce liquid sloshing.,” Procedia Engineering 69 , pp. 1365-1371, 2014.
Craig, K. J., and T. C. Kingsley., “Design optimization of containers for sloshing and impact.,” Structural and Multidisciplinary Optimization 33.1, pp. 71-87, 2007.
國立清華大學原子科學技術發展中心, “國立清華大學水池式反應器運轉執照更新安全分析報告,” 2012.
王福军, 计算流体动力学分析: CFD 软件原理与应用, 清华大学出版社有限公司, 2004.
J. Smagorinsky, “General Circulation Experiments with the Primitive Equations,” Monthly Weather Review. 91 (3), pp. 99-164, March 1963.
J. Deardorff, “A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers,” Journal of Fluid Mechanics. 41 (2), pp. 453-480, 1970.
C. Y. e. a. Wu, “Investigating the advantages and disadvantages of realistic approach and porous approach for closely packed pebbles in CFD simulation.,” Nuclear Engineering and design 240.5, pp. 1151-1159, 2010.
H. a. C. N. S. Ayhan, “CFD modeling of thermal mixing in a T-junction geometry using LES model.,” Nuclear Engineering and Design 253, pp. 183-191, 2012.
D. e. a. Gueyffier, “Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows.,” Journal of Computational physics 152.2, pp. 423-456, 1999.
行. 核能管制處, “「核能電廠耐震安全再評估精進作業」之地震危害度分析與設計地震檢討原能會安全評估報告,” 行政院原子能委員會 核能管制處 , 中華民國 103年8月.
S. V. a. D. B. S. Patankar, “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,” International journal of heat and mass transfer 15.10, pp. 1787-1806, 1972.