簡易檢索 / 詳目顯示

研究生: 蕭鳴均
Ming-Jun Hsiao
論文名稱: 嵌入式時間參數量測
Built-in Timing Parametric Measurement
指導教授: 張慶元
Tsin-Yuan Chang
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 72
中文關鍵詞: 時間參數量測雙斜率轉換雙指數曲線轉換設定時間保持時間時間數位轉換器安定時間補償
外文關鍵詞: timing measurement, dual-slope, dual exponential curve, setup time, hold time, time-to-digital converter (TDC), settling time canceling
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著深次微米製程的進步以及降低成本的需求,將各式各樣的線路整合至一個系統晶片已經是一種趨勢。但是由於高度整合的結果,使得各個線路缺乏足夠的可控制性與可觀測性,也造成了需要額外的測試存取機制以及高速的自動測試機台來完成測試,因此造成了測試成本的增加。除此之外,額外的測試存取機構也帶來額外的時間延遲而造成測式時間參數上的困難以及準確度。而嵌入式的量測可以在晶片內完成準確的量測,同時又能與低價的自動測試機台合作來得到量測數據,因而能降低測試成本。
    根據時間放大的觀念,在本論文中提出了兩種時間量測線路。第一種是根據傳統的雙斜率轉換並同時考量安定時間等非理想因素而將可測範圍向下延伸至0.5奈秒。我們所提出的是一種自動時序的方法,也因此不需要額外的控制線路,所以在0.25微米的CMOS製程下的面積只有72微米乘以43微米,同時我們的線路也能夠量測設定時間與保持時間。第二種則是依據一個稱為雙指數曲線轉換的全新方法。由於採用的是最自然的指數曲線,所以我們的線路可以不需要高線性度的元件,因而降低了設計上的難度。更重要的是,雙指數曲線轉換的方法不需要參考的時間單位來作為校正輸入,因此可以避免參考時間的不確定性如時基抖動所造成的誤差。同時我們也根據誤差分析提出了一個設計指南。


    As the progress in deep sub-micron technology, the integration of more heterogeneous components into a System-On-a-Chip is performed for reducing production cost. However, the testing cost is increased rapidly due to lack of controllability and observability, and thus general test access mechanism and high-performance Automatic Test Equipments (ATEs) are needed to overcome the testing problems. Furthermore, the required general test access mechanism usually introduces extra timing penalties for parametric testing, and hence reduces the accuracy of AC measurement. In this way, embedded measurements are needed to accurately measure the parameters inside the chip with the cooperation of low-cost ATEs for reducing test cost.
    Based on the pulse-stretching principle, two types of timing measurement circuits are proposed in this thesis for embedded measurement. The first one is founded on traditional dual-slope conversion while considering the non-ideal effects such as settling time to extend the measurable range below 0.5ns. Since a self-timed method is proposed to reduce the requirements of controller, the area is only 72mm X 43mm n a 0.25mm 1P5M CMOS technology, and the capability of setup/hold time measurement is provided in the meanwhile. The second one is a brand-new method based on dual-exponential curve transformation. By utilizing the inherent exponential curves, high-linearity components are not necessarily required and the design efforts are relaxed. Furthermore, the dual-exponential curve transformation needs no reference time intervals for calibration, and hence it immunes to the uncertainties such as jitter of the reference inputs. A design guideline is also proposed for this method based on the error analysis.

    Contents Chapter 1. Introduction 1 Chapter 2. Overview 4 2.1. Built-in timing measurement for embedded memories 4 2.2. Issues of timing parametric measurement 6 2.3. Principle of Vernier delay line 11 2.4. Principle of Vernier oscillator 12 2.5. Principle of dual-slope conversion for time interval measurement 13 Chapter 3. The Dual-Slope Method 16 3.1. The proposed method: version 1 16 3.1.1. Ratioed resistor array 17 3.1.2. Comparator (CMP) 17 3.1.3. Control logic 20 3.1.4. Offset Canceling (AutoZero) 21 3.2. The proposed method: version 2 23 3.2.1. The block diagram of the proposed circuit 24 3.2.2. The self-timed method 25 3.2.3. Settling time cancellation 26 3.3. Linearity analysis and calibration 28 3.3.1. Linearity analysis 28 3.3.2. Calibration 30 3.4. Simulations and experimental results 34 3.4.1. Access time measurement 35 3.4.2. Setup/hold time measurement 37 3.4.3. Experimental results 38 3.5. Comparisons and discussions 40 3.6. A complete access time measurement unit for embedded memory 42 3.6.1. TVC and VTC 44 3.6.2. The implementation of proposed TDC 45 3.6.3. The peak detector and comparator 46 3.6.4. The measurement flow 49 3.6.5. Experimental results 50 3.7. Summary 53 Chapter 4. Dual-Exponential Curve Transformation 54 4.1. The Basic Principle 54 4.2. The Calibration Methodology 56 4.3. The Implementation 56 4.3.1. The Operation Principle 57 4.3.2. The Calibration Process 60 4.4. Error Analysis 61 4.4.1. Quantization error of calibration 61 4.4.2. Parasitic Effect 62 4.5. Simulation Results 63 4.6. Summary 67 Chapter 5. Conclusions and Future Works 68 References 70

    [1] E. J. Marinissen, R Kapur and Y. Zorian, “On Using IEEE P1500 SECT for Test Plug-n-Play”, Proceedings of International Test Conference, IEEE, 2000, pp. 770-777.
    [2] E. J. Marinissen, Y. Zorian, R Kapur, T. Taylor and L. Whetsel, “Towards a Standard for Embedded Core Test: An Example”, Proceedings of International Test Conference, IEEE, 1999, pp. 616-627.
    [3] P. D. Fisher and R. Nesbitt, “The Test of Time – Clock-cycle Estimation and Test Challenges for Future Microprocessors”, IEEE Circuits and Devices Magazine, Mar. 1998, pp. 37-44.
    [4] http://public.itrs.net/Files/2001ITRS/Home.htm
    [5] K. Arabi, K.-D. Hilliges, D. Keezer and S. Tabatabaei, “Multi-GigaHertz Testing Challenges and Solutions”, Proceedings of IEEE VLSI Test Symposium, 2002, pp. 265.
    [6] S. Balajee and A. K. Majhi, “Automated AC (timing) characterization for digital circuit testing”, Proceedings of Eleventh International Conference on VLSI Design, IEEE, 1998, pp. 374-377.
    [7] P. Chen and S.-I. Liu, “A Cyclic CMOS Time-to-Digital Converter with Deep Sub-Nanosecond Resolution”, Proceedings of Custom-Integrated Circuits Conference, IEEE, 1999, pp. 605-608.
    [8] E. R□is□nen-Ruosalainen, T. Rahkonen and J. Kostamovaara, “A Low-Power CMOS Time-to-Digital Converter”, IEEE Journal of Solid-State Circuits, vol. 30, no. 9, 1995, pp. 984-990.
    [9] P. Dudek, S. Szczepański and J. V. Hatfield, “A High-Resolution CMOS Time-to-Digital Converter Utilizing a Vernier Delay Line”, IEEE Transactions on Solid-State Circuits, vol. 35, no. 2, Feb. 2000, pp. 240-247.
    [10] A. H. Chan and G. W. Roberts, “A Synthesizable, Fast, and High-Resolution Timing Measurement Device Using a Component-Invariant Vernier Delay Line”, Proceedings of International Test Conference, IEEE, pp. 858-867, 2001.
    [11] A. H. Chan and G. W. Roberts, “A Deep Sub-Micron Timing Measurement Circuit Using a Single Stage Vernier Delay Line”, Proceedings of Custom Integrated Circuits Conference, IEEE, 2002, pp. 77–80.
    [12] C.-C. Tsai and C.-L. Lee, “An On-Chip Jitter Measurement Circuit for the PLL”, Proceedings of Asian Test Symposium, IEEE, 2003, pp. 332-335.
    [13] N. Abaskharoun, M. Hafed and G.W. Roberts, “Strategies for On-chip Sub-Nanosecond Signal Capture and Timing Measurements”, Proceedings of International Symposium on Circuits and Systems, IEEE, 2001, pp. 174-177.
    [14] J.-L. Huang and K.-T. Cheng, “An On-Chip Short-Time Interval Measurement Technique for Testing High-Speed Communication Links”, Proceedings of VLSI Test Symposium, IEEE, 2001, pp. 380-385.
    [15] S. Tabatabaei and A. Ivanov, “Embedded timing analysis: A SoC infrastructure”, IEEE Design and Test of Computers, May/Jun. 2002, pp. 24–36.
    [16] J. O’Hern and N. Schindler, “High Resolution Time Interval Measuring Circuit Employing a Balanced Crystal Oscillator”, US patent 3,325,750, to General Electric Co., Patent and Trademark Office, 1967.
    [17] Z. Tarczy-Hornoch and P. Young, “Interpolating Time Interval Counter with Course Count Ambiguity Eliminating Means”, US patent 3,505,594, to W.K. Rosenberry, Patent and Trademark Office, 1970.
    [18] W. Curtice, Time Interval Measurement, US patent 4,165,459, to RCA Corp., Patent and Trademark Office, 1979.
    [19] A. Frisch and T. Rinderknecht, “Jitter Measurement System and Method”, US patent 6,295,315, to Fluence Technologies, Patent and Trademark Office, 2001.
    [20] E. R□is□nen-Ruosalainen, T. Rahkonen and J. Kostamovaara, “Time Interval Measurements Using Time-to-Voltage Conversion with Built-in Dual-Slope A/D Conversion”, Proceedings of International Symposium on Circuits and Systems, IEEE, 1991, pp. 2573-2576.
    [21] E. R□is□nen-Ruosalainen, T. Rahkonen and J. Kostamovaara, “A BiCMOS Time-to-Digital Converter with 30 ps Resolution”, Proceedings of International Symposium on Circuits and Systems, IEEE, pp. 278-281, 1999.
    [22] R. L. Sumner, “Apparatus and Method for Measuring Time Intervals with Very High Resolution, US patent 6,137,749, to LeCroy Corp., 2000.
    [23] E. R□is□nen-Ruosalainen, T. Rahkonen and J. Kostamovaara, “An Integrated Time-to-Digital Converter with 30-ps Single-Shot Precision”, IEEE Journal of Solid-State Circuits, vol. 35, no. 10, 2000, pp. 1507-1510.
    [24] M.-J. Hsiao, J.-R. Huang, S.-S. Yang and T.-Y. Chang, “A Low-Cost CMOS Time Interval Measurement Core”, Proceedings of International Symposium on Circuits and Systems, IEEE, vol. 4, 2001, pp. 190-193.
    [25] M.-J. Hsiao, J.-R. Huang, S.-S. Yang and T.-Y. Chang, “A Built-in Timing Parametric Measurement Unit”, Proceedings of International Test Conference, IEEE, 2001, pp. 315-322.
    [26] S.-R. Lee, M.-J. Hsiao and T.-Y. Chang, “An Access Timing Measurement Unit of Embedded Memory”, Proceedings of Asian Test Symposium, IEEE, 2002, pp. 266-271.
    [27] T. Xia and J.-C. Lo, “Time-to-Voltage Converter for On-Chip Jitter Measurement”, IEEE Transactions on Instrument and Measurement, vol. 52, no. 6, Dec. 2003, pp. 1738-1748.
    [28] S. Sunter and A. Roy, “BIST for Phase-Locked Loops in Digital Applications”, Proceedings of International Test Conference, IEEE, 1999, pp. 532-540.
    [29] N.-Y. Sung and T.-Y. Wu, “A Method of Embedded Memory Access Time Measurement,” Proceeding of International Symposium on Quality Electronic Design, IEEE, 2001, pp.462-465.
    [30] E. Rubiola, A. Del Casale and A. De Marchi, “Noise Induced Time Interval Measurement Biases”, Proceedings of Frequency Control Symposium, IEEE, 1992, pp. 265-269.
    [31] A. Mutoh and S. Nitta, “Noise Immunity Characteristics of Dual-Slope Integrating Analog-Digital Converters”, Proceedings of International Symposium on Electromagnetic Compatibility, IEEE, 1999, pp. 622-625.
    [32] K. Koli, K Halonen, ”Low voltage MOS-Transistor -only precision current peak detector with signal independent discharge time constant” Proceedings of International Symposium on Circuits and Systems, IEEE, vol.3., 1997, pp. 1992 –1995.
    [33] J. Kalisz, “Determination of Short-Term Error Caused by the Reference Clock in Precision Time-Interval Measurement and Generation”, IEEE Transactions on Instrument and Measurement, vol. 37, no.2, Jun. 1988, pp. 315-316.
    [34] S. Bregni, M. Carbonelli, D. De Seta and D. Perucchini, “Impact of Slave Clock Internal Noise on Allan Variance and Root Mean Square Time Interval Error Measurements”, Proceedings of Instrument and Measurement Technology Conference, IEEE, 1994, pp. 1411-1414.
    [35] B. Razavi and B. A. Wolley, “Design Techniques for High-Speed, High-Resolution Comparators”, IEEE Journal of Solid-State Circuits, vol. 27, no. 12, Dec. 1992, pp. 1916–1926.
    [36] D. A. Johns, K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc., N.Y., 1997.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE