簡易檢索 / 詳目顯示

研究生: 周靜宜
Chou, Ching Yi
論文名稱: 果蠅脂肪酸結合蛋白的純度鑑定與微脂體交互作用探討
Purity and Liposome Interaction of Drosophila Fatty Acid Binding Proteins
指導教授: 呂平江
Lyu, Ping Chiang
口試委員: 詹鴻霖
Chan, Hong Lin
蘇士哲
Sue, Shin-Che
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 71
中文關鍵詞: 果蠅脂肪酸結合蛋白純度鑑定微脂體氣相層析核磁共振
外文關鍵詞: Drosophila Fatty Acid Binding Proteins, Purity, Liposome, Gas chromatography, nuclear magnetic resonance spectroscopy
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 果蠅脂肪酸結合蛋白是脂肪酸結合蛋白家族之一員,屬於脂肪結合超蛋白家族;脂肪結合超蛋白家族是由一群可以與疏水性配基結合的小分子量蛋白所組成,與脂肪酸結合蛋白結合的是長鏈脂肪酸。在哺乳類中,脂肪酸結合蛋白表現量豐富並且具有組織特異性。脂肪酸結合蛋白在生理功能被認為是負責脂肪酸的輸送、代謝和儲存,參與能量儲存、細胞生長、細胞代謝等。脂肪酸結合蛋白對細胞膜的交互作用機制目前有兩種可能的機制被提出,分別是碰撞型機制和擴散型機制。在實驗室先前的研究中,已知果蠅脂肪酸結合蛋白的結構特徵和其配基的特異性。在研究文獻過去中指出純化脂肪酸結合蛋白質時即使已經過脫脂處理,還是容易含有從大腸桿菌來的內生性、疏水性汙染物。為了確保果蠅脂肪酸結合蛋白的純度,我們利用氣相層析確認取得的果蠅脂肪酸結合蛋白是純淨的,用這純淨的果蠅脂肪酸結合蛋白質做更進一步的實驗分析。加上,由於果蠅脂肪酸結合蛋白與細胞膜的交互作用機制尚未清楚。在這實驗中,我們使用核磁共振技術探討果蠅脂肪酸結合蛋白與細胞膜之間的交互作用。實驗發現沒有配基結合的果蠅脂肪酸結合蛋白與人造細胞膜的交互作用強,有配基結合的果蠅脂肪酸結合蛋白與人造細胞膜交互作用弱,這可能暗示人造細胞膜與沒有配基結合的果蠅脂肪酸蛋白會結合,但不太會結合有配基結合的果蠅脂肪酸蛋白。


    Drosophila melanogaster fatty acid binding protein (dFABP) is one of fatty acid binding protein family which belongs to intracellular lipid binding protein superfamily, a group of low molecular weight proteins, which binds to long chain fatty acids. FABPs express highly in mammalian and have tissue specificity. Physiological function of FABPs are reported to transport, metabolize and store fatty acid involving in energy storage, cell growth, cellular metabolism and so on. There are two hypotheses for interaction between FABPs and membranes, diffusional-dependent mechanism and collisional-dependent mechanism. In our previous studies, we characterized structural properties and fatty acid binding specificity of dFABP. But mechanism between dFABP and membranes remains unknown. As reports, the purification of FABPs easily accompanied with hydrophobic contamination even though delipidation was conducted. To measure the purity of dFABP, we used gas chromatography in this study to confirm the apo form of dFABP we obtained for further studies. This study aims to obtain pure apo form dFABP and investigate the relationship between dFABP and membranes by liposome titration experiment of nuclear magnetic resonance spectroscopy (NMR). We found interaction between apo form dFABP and liposome is strong. But interaction between holo form dFABP and liposome is weak. Altogether, we suggested phospholipid vesicles associated with apo form dFABP, but disassociated with holo form dFABP.

    中文摘要 2 Abstract 2 Acknowledgement 2 Contents 4 List of Figures and Tables 6 Abbreviations 8 Chapter 1. Introduction 10 1.1 Fatty acid binding protein family 10 1.2 Structure and function of FABPs 21 1.3 Drosophila melanogaster fatty acid binding protein(dFABP) 21 1.4 Interaction between FABPs and membranes 23 1.5 Aim 24 Chapter 2. Materials and Methods 25 2.1 Drosophila melanogaster FABP expression and purification 25 2.1.1 dFABP expression and purification 25 2.2 Purity analysis of dFABP 26 2.2.1 Tricine SDS-PAGE 26 2.2.2 Sample preparation for Gas chromatography (GC) 27 2.3 Proteins quantified by bicinchoninic acid (BCA) assay 18 2.4 Circular Dichroism (CD) Spectroscopy 18 2.5 Phospholipid vesicles 19 2.5.1 Preparation of phospholipid vesicles 19 2.5.2 Dynamic light scattering (DLS) 20 2.6 Nuclear magnetic resonance spectroscopy (NMR) 20 Chapter 3. Result and Discussion 22 3.1 Purification of dFABP 22 3.2 Purity of dFABP 23 3.2.1 SDS-PAGE comparison of two dFABP purifications 23 3.2.2 HSQC comparison of two dFABP purifications 23 3.2.3 Analysis of gas chromatography (GC) 24 3.3 Biophysical properties of Drosophila FABP 27 3.3.1 Analysis of circular dichroism spectra 27 3.4 Determination of liposome acquisition via dynamic light scattering 27 3.5 Interaction between Drosophila FABP and phospholipid vesicles 28 3.5.1Analyses of dFABP interacting with different liposomes by HSQC 28 Chapter 4. Conclusion 32 Figures and Tables 33 Appendix 63 Reference 68

    1. Bernlohr DA, Simpson MA, Hertzel AV, Banaszak LJ. Intracellular lipid-binding proteins and their genes. Annual Review of Nutrition 1997;17:277-303.
    2. Schaap FG, van der Vusse GJ, Glatz JFC. Evolution of the family of intracellular lipid binding proteins in vertebrates. Molecular and Cellular Biochemistry 2002;239(1-2):69-77.
    3. Sweetser DA, Heuckeroth RO, Gordon JI. The Metabolic Significance of Mammalian Fatty-Acid-Binding Proteins - Abundant Proteins in Search of a Function. Annual Review of Nutrition 1987;7:337-359.
    4. Hertzel AV, Bernlohr DA. The mammalian fatty acid-binding protein multigene family: Molecular and genetic insights into function. Trends in Endocrinology and Metabolism 2000;11(5):175-180.
    5. Zimmerman AW, Veerkamp JH. New insights into the structure and function of fatty acid-binding proteins. Cellular and Molecular Life Sciences 2002;59(7):1096-1116.
    6. Bernlohr DA SM, Hertzel AV, Banaszak LJ. The human fatty acid-binding protein family: Evolutionary divergences and functions. Petersen Human Genomics 2011;5(3):170-191.
    7. Storch J, Bass NM, Kleinfeld AM. Studies of the Fatty Acid-Binding Site of Rat-Liver Fatty Acid-Binding Protein Using Fluorescent Fatty-Acids. Journal of Biological Chemistry 1989;264(15):8708-8713.
    8. Zamarreno F, Herrera FE, Corsico B, Costabel MD. Similar structures but different mechanisms Prediction of FABPs-membrane interaction by electrostatic calculation. Biochimica Et Biophysica Acta-Biomembranes 2012;1818(7):1691-1697.
    9. Steele RA, Emmert DA, Kao J, Hodsdon ME, Frieden C, Cistola DP. The three-dimensional structure of a helix-less variant of intestinal fatty acid-binding protein. Protein Science 1998;7(6):1332-1339.
    10. Corsico B, Cistola DP, Frieden C, Storch J. The helical domain of intestinal fatty acid binding protein is critical for collisional transfer of fatty acids to phospholipid membranes. Proceedings of the National Academy of Sciences of the United States of America 1998;95(21):12174-12178.
    11. Herr FM, Aronson J, Storch J. Role of portal region lysine residues in electrostatic interactions between heart fatty acid binding protein and phospholipid membranes. Biochemistry 1996;35(4):1296-1303.
    12. Falomir-Lockhart LJ, Laborde L, Kahn PC, Storch J, Corsico B. Protein-membrane interaction and fatty acid transfer from intestinal fatty acid-binding protein to membranes - Support for a multistep process. Journal of Biological Chemistry 2006;281(20):13979-13989.
    13. Mihajlovic M, Lazaridis T. Modeling fatty acid delivery from intestinal fatty acid binding protein to a membrane. Protein Science 2007;16(9):2042-2055.
    14. Glatz JFC, Luiken JJFP, van Bilsen M, van der Vusse GJ. Cellular lipid binding proteins as facilitators and regulators of lipid metabolism. Molecular and Cellular Biochemistry 2002;239(1-2):3-7.
    15. van der Vusse GJ, van Bilsen M, Glatz JFC, Hasselbaink DM, Luiken JJFP. Critical steps in cellular fatty acid uptake and utilization. Molecular and Cellular Biochemistry 2002;239(1-2):9-15.
    16. Hamilton JA, Guo W, Kamp F. Mechanism of cellular uptake of long-chain fatty acids: Do we need cellular proteins? Molecular and Cellular Biochemistry 2002;239(1-2):17-23.
    17. Boneva NB, Kaplamadzhiev DB, Sahara S, Kikuchi H, Pyko IV, Kikuchi M, Tonchev AB, Yamashima T. Expression of fatty acid-binding proteins in adult hippocampal neurogenic niche of postischemic monkeys. Hippocampus 2011;21(2):162-171.
    18. Veerkamp JH, Zimmerman AW. Fatty acid-binding proteins of nervous tissue. Journal of Molecular Neuroscience 2001;16(2-3):133-142.
    19. Ayers SD, Nedrow KL, Gillilan RE, Noy N. Continuous nucleocytoplasmic shuttling underlies transcriptional activation of PPAR gamma by FABP4. Biochemistry 2007;46(23):6744-6752.
    20. Porfido JL, Alvite G, Silva V, Kennedy MW, Esteves A, Corsico B. Direct Interaction between EgFABP1, a fatty acid binding protein from Echinococcus granulosus, and Phospholipid Membranes. PLOS Neglected Tropical Diseases 2012;6(11):e1893.
    21. Cistola DP, Sacchettini JC, Banaszak LJ, Walsh MT, Gordon JI. Fatty-acid interactions with rat intestinal and liver fatty acid-binding proteins expressed in Escherichia coli - a comparative C-13 NMR-Study. Journal of Biological Chemistry 1989;264(5):2700-2710.
    22. Cai J, Luċke C, Chen Z, Qiao Y, Klimtchuk E, Hamilton JA. Solution structure and backbone dynamics of human liver fattyacid binding protein: fatty acid binding revisited. Biophysical Journal 2012;102:2585-2594.
    23. Information of FBtr0100321 form FlyBase.
    24. Information of CG6783 fatty acid binding protein form Ensembl.
    25. Gerstner JR, Vanderheyden WM, Shaw PJ, Landry CF, Yin JCP. Fatty-acid binding proteins modulate sleep and enhance long-term memory consolidation in Drosophila. PLOS One 2011;6(1): e15890.
    26. JR G, WM V, PJ S, CF L, JC Y. Cytoplasmic to nuclear localization of fatty-acid binding protein correlates with specific forms of long-term memory in Drosophila. Communicative and Integrative Biology 2011;4(5):623-626.
    27. Vorum H, Brodersen R, Kraghhansen U, Pedersen AO. Solubility of long-chain fatty-acids in phosphate buffer at pH-7.4. Biochimica Et Biophysica Acta 1992;1126(2):135-142.
    28. Weisiger RA. When is a carrier not a membrane carrier? The cytoplasmic transport of amphipathic molecules. Hepatology 1996;24(5):1288-1295.
    29. McArthur MJ, Atshaves BP, Frolov A, Foxworth WD, Kier AB, Schroeder F. Cellular uptake and intracellular trafficking of long chain fatty acids. Journal of Lipid Research 1999;40(8):1371-1383.
    30. Weisiger RA. Mechanisms of intracellular fatty acid transport: Role of cytoplasmic-binding proteins. Journal of Molecular Neuroscience 2007;33(1):42-44.
    31. Hsu KT, Storch J. Fatty acid transfer from liver and intestinal fatty acid-binding proteins to membranes occurs by different mechanisms. Journal of Biological Chemistry 1996;271(23):13317-13323.
    32. Velkov T, Chuang S, Wielens J, Sakellaris H, Charman WN, Porter CJH, Scanlon MJ. The interaction of lipophilic drugs with intestinal fatty acid-binding protein. Journal of Biological Chemistry 2005;280(18):17769-17776.
    33. Chuang S, Velkov T, Horne J, Porter CJH, Scanlon MJ. Characterization of the drug binding specificity of rat liver fatty acid binding protein. Journal of Medicinal Chemistry 2008;51(13):3755-3764.
    34. Chuang S, Velkov T, Horne J, Wielens J, Chalmers DK, Porter CJH, Scanlon MJ. Probing the Fibrate Binding Specificity of Rat Liver Fatty Acid Binding Protein. Journal of Medicinal Chemistry 2009;52(17):5344-5355.
    35. Das T, Sa G, Mukherjea M. Purification and characterization of fatty acid-binding protein from human placenta. Lipids 1988;23(6):528-33.
    36. Hohoff C, Borchers T, Rustow B, Spener F, van Tilbeurgh H. Expression, purification, and crystal structure determination of recombinant human epidermal-type fatty acid binding protein. Biochemistry 1999;38(38):12229-39.
    37. Jenkins-Kruchten AE, Bennaars-Eiden A, Ross JR, Shen WJ, Kraemer FB, Bernlohr DA. Fatty acid-binding protein-hormone-sensitive lipase interaction. Fatty acid dependence on binding. The Journal of Biological Chemistry 2003;278(48):47636-43.
    38. Cistola DP, Small DM. Fatty-Acid Distribution in Systems Modeling the Normal and Diabetic Human Circulation - a C-13 Nuclear-Magnetic-Resonance Study. Journal of Clinical Investigation 1991;87(4):1431-1441.
    39. Wu, X., Y. Tong, K. Shankar, J. N. Baumgardner, J. Kang, J. Badeaux , T. M. Badger, and M. J. Ronis. 2011. Lipid fatty acid profile analyses in liver and serum in rats with nonalcoholic steatohepatitis using improved gas chromatography-mass spectrometry methodology. Journal of Agricultural and Food Chemistry 59:747 – 754.
    40. Hertzel AV, Bennaars-Eiden A, Bernlohr DA. Increased lipolysis in transgenic animals overexpressing the epithelial fatty acid binding protein in adipose cells. J Lipid Res 2002;43(12):2105-11.
    41. Owada Y, Takano H, Yamanaka H, Kobayashi H, Sugitani Y, Tomioka Y, Suzuki I, Suzuki R, Terui T, Mizugaki M and others. Altered water barrier function in epidermal-type fatty acid binding protein-deficient mice. Journal of Investigative Dermatology 2002;118(3):430-5.
    42. Eder K. Gas chromatographic analysis of fatty acid methyl esters. Journal of Chromatography B: Biomedical Sciences and Applications 1995;671(1-2):113-31.
    43. Eder K, Reichlmayr-Lais AM, Kirchgessner M. Studies on the methanolysis of small amounts of purified phospholipids for gas chromatographic analysis of fatty acid methyl esters. Journal of Chromatography A 1992;607(1):55-67.
    44. EN-14103. Fat and oil derivatives – Fatty Acid Methyl Esters (FAME) – Determination of ester and linolenic acid methyl ester contents.
    45. Christie, WW. Gas chromatography and lipids. 1, Matreya; 1989.
    46. Christie, WW. Advances in lipid methodology – two. 2, Matreya; 1993
    47. Robinson DS. The effect of changes in nutritional state on the lipolytic activity of rat adipose tissue. The Journal of Lipid Research 1960;1:332-8.
    48. Duarte-Vazquez MA, Garcia-Padilla S, Olvera-Ochoa L, Gonzalez-Romero KE, Acosta-Iniguez J, De la Cruz-Cordero R, Rosado JL. Effect of protamine in obesity induced by high-fat diets in rats. International Journal of Obesity 2009;33(6):687-92.
    49. Fasman, GD. Circular dichroism and the conformational analysis of biomolecules.
    Springer, US; 1996.
    50. Ceccon A, D'Onofrio M, Zanzoni S, Longo DL, Aime S, Molinari H, Assfalg M. NMR investigation of the equilibrium partitioning of a water-soluble bile salt protein carrier to phospholipid vesicles. Proteins 2013;81(10):1776-91.
    51. James RK. and Dinesh OS. Effect of degree, type, and position of unsaturation on the pKa of long-chain fatty acids. Journal of Colloid and Interface Science 2002;256: 201–207
    52. Thomas LJ. Fundamentals of NMR. 1998.
    53. Bloembergen N, Purcell EM, and Pound RV. Pound relaxation effects in nuclear
    magnetic resonance absorption. Physical Review 1948;73:679-746.
    54. Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nature Reviews Drug Discovery 2008;7(6):489-503.
    55. Saitoh T, Igura M, Obita T, et al. Tom20 recognizes mitochondrial presequences through dynamic equilibrium among multiple bound states. The EMBO Journal. 2007;26(22):4777-4787.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE